Abstract
A methyl-substituted p-phenylenediamine (PD), N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD), is examined as a positive redox couple with high energy density for non-aqueous Li-flow batteries. Methyl substitution affects the solubility of the redox couple, as the solubility is increased by a factor of ten, to a maximum solubility of 5.0 M in 1.0 M lithium tetrafluoroborate-propylene carbonate supporting electrolyte due to elimination of the hydrogen bonding between the solute molecules. The methyl substitution also enhances the chemical stability of the cation radical and di-cation being generated from PD, as the redox center is shielded by the methyl groups. Furthermore, this organic redox couple demonstrate two-electron redox reactions at 3.2 and 3.8 V (vs. Li/Li+); therefore, the volumetric capacity is twice higher compared to conventional one-electron involved redox couples. In a non-flowing Li/TMPD coin-cell, this organic redox couple demonstrates very stable cycleability as a positive redox couple for non-aqueous flow batteries.
Original language | English |
---|---|
Pages (from-to) | 264-269 |
Number of pages | 6 |
Journal | Journal of Power Sources |
Volume | 348 |
DOIs | |
State | Published - 2017 |
Keywords
- Chemical stability
- Li-flow batteries
- Non-aqueous electrolytes
- Organic redox couples
- Solubility