A GIS-Based Framework for Real-Time Debris-Flow Hazard Assessment for Expressways in Korea

Han Saem Kim, Choong Ki Chung, Sang Rae Kim, Kyung Suk Kim

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Debris flows caused by heavy rainfall in mountain areas near expressways lead to severe social and economic losses and sometimes result in casualties. Therefore, the development of a real-time system for debris-flow hazard assessment is necessary to provide preliminary information for rapid decision making about evacuations or restoration measures, as well as to prevent secondary disasters caused by debris flows. Recently, various map-based approaches have been proposed using multi-attribute criteria and assessment methods for debris-flow susceptibilities. For the macrozonation of debris-flow hazard at a national scale, a simplified method such as the Korea Expressway Corporation (KEC) debris-flow hazard assessment method can be applied for systematic analysis based on geographic information systems (GIS) and monitoring networks. In this study, a GIS-based framework of real-time debris-flow hazard assessment for expressway sections is proposed based on the KEC debris-flow hazard assessment method. First, the KEC-based method was standardized in a systematic fashion using ArcGIS, enabling the objective and quantitative acquisition of various attribute datasets. The quantification of rainfall criteria also was considered. A safety management system for debris-flow hazard was developed based on the GIS platform. Finally, the method was applied and verified on three expressway sections in Korea. The grading standard for each individual influencing attribute was subsequently modified to more accurately assess the debris-flow hazards.

Original languageEnglish
Pages (from-to)293-311
Number of pages19
JournalInternational Journal of Disaster Risk Science
Volume7
Issue number3
DOIs
StatePublished - 1 Sep 2016

Keywords

  • Debris-flow hazard
  • Expressway management
  • GIS
  • Korea
  • Real-time hazard assessment

Fingerprint

Dive into the research topics of 'A GIS-Based Framework for Real-Time Debris-Flow Hazard Assessment for Expressways in Korea'. Together they form a unique fingerprint.

Cite this