TY - JOUR
T1 - A high-temperature tolerance solution for positive electrolyte of vanadium redox flow batteries
AU - Kim, Donghyeon
AU - Jeon, Joonhyeon
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/9/15
Y1 - 2017/9/15
N2 - Vanadium redox flow battery (VRFB) is attractive for energy storage applications, but there still remains a problem of preventing V-precipitation reaction (i.e., V2O5) to provide the thermal stability of electrolyte employed in VRFB. The V2O5 precipitation is accelerated in the positive electrolyte under high temperature, resulting in decreasing the charge capacity and energy efficiency of VRFB. So far, previous supporting materials, which are used to solve such precipitation problem, provide a disadvantage of decreasing voltage efficiency of VRFBs by increasing electrolyte resistance. This paper describes an advanced vanadium-positive electrolyte with high-temperature tolerance for high-efficiency VRFBs, which uses a sodium formate as a supporting material. The sodium formate plays a role as an agent capable of preventing precipitation reaction in the positive electrolyte and it also provides an effect of decreasing a viscosity of the positive electrolyte. The effectiveness of the proposed electrolyte solution is demonstrated through the following experiments: UV–vis spectrometry, viscosity measurement, cyclic voltammetry (CV), VRFB operation and scanning electron microscopy (SEM) analysis. Then, for the performance comparison of high temperature stability, all experiments are carried out at 60 °C. Experimental results show that using the sodium formate leads to near 4.5 times increase of diffusion coefficient as compared to conventional electrolyte, and also provides 20.2% higher charge capacity (50th cycle) and 2.27% higher average energy efficiency (50 cycles) at the current density of 80 mA cm− 2. In addition, it appears that the precipitation of vanadium species is not observed in the electrolyte during VRFB operation. Therefore, this paper provides that new direction about effect of the additive in the positive electrolyte and the sodium formate can be considered as a promising additive for high-performance electrolyte of VRFBs.
AB - Vanadium redox flow battery (VRFB) is attractive for energy storage applications, but there still remains a problem of preventing V-precipitation reaction (i.e., V2O5) to provide the thermal stability of electrolyte employed in VRFB. The V2O5 precipitation is accelerated in the positive electrolyte under high temperature, resulting in decreasing the charge capacity and energy efficiency of VRFB. So far, previous supporting materials, which are used to solve such precipitation problem, provide a disadvantage of decreasing voltage efficiency of VRFBs by increasing electrolyte resistance. This paper describes an advanced vanadium-positive electrolyte with high-temperature tolerance for high-efficiency VRFBs, which uses a sodium formate as a supporting material. The sodium formate plays a role as an agent capable of preventing precipitation reaction in the positive electrolyte and it also provides an effect of decreasing a viscosity of the positive electrolyte. The effectiveness of the proposed electrolyte solution is demonstrated through the following experiments: UV–vis spectrometry, viscosity measurement, cyclic voltammetry (CV), VRFB operation and scanning electron microscopy (SEM) analysis. Then, for the performance comparison of high temperature stability, all experiments are carried out at 60 °C. Experimental results show that using the sodium formate leads to near 4.5 times increase of diffusion coefficient as compared to conventional electrolyte, and also provides 20.2% higher charge capacity (50th cycle) and 2.27% higher average energy efficiency (50 cycles) at the current density of 80 mA cm− 2. In addition, it appears that the precipitation of vanadium species is not observed in the electrolyte during VRFB operation. Therefore, this paper provides that new direction about effect of the additive in the positive electrolyte and the sodium formate can be considered as a promising additive for high-performance electrolyte of VRFBs.
KW - Energy storage system
KW - Redox flow battery
KW - Sodium formate
KW - Thermal stability
KW - Vanadium redox flow battery
UR - http://www.scopus.com/inward/record.url?scp=85025668775&partnerID=8YFLogxK
U2 - 10.1016/j.jelechem.2017.07.037
DO - 10.1016/j.jelechem.2017.07.037
M3 - Article
AN - SCOPUS:85025668775
SN - 1572-6657
VL - 801
SP - 92
EP - 97
JO - Journal of Electroanalytical Chemistry
JF - Journal of Electroanalytical Chemistry
ER -