Abstract
An approach to the design of a series of quinolinol-based indium complexes that can exhibit different optical properties is proposed. Mono-incorporated (Inq1 and InMeq1), bis-incorporated (InMeq2), and tris-incorporated (Inq3 and InMeq3) indium quinolinate complexes have been prepared. These complexes have also been characterized by X-ray crystallography. The photophysical properties of these complexes have also been examined by a combination of experimental and theoretical techniques. The indium complexes with a single quinolinol ligand (Inq1 and InMeq1) showed higher quantum efficiency than those with two or three quinolinate ligands; in particular, InMeq1 exhibited the highest quantum yield [φPL = 59% in poly(methyl methacrylate) film]. The insights into the nature of these findings were obtained by the sequential synthesis of the quinolinol-based indium luminophores and a detailed investigation of their structural stability.
Original language | English |
---|---|
Pages (from-to) | 8056-8063 |
Number of pages | 8 |
Journal | Inorganic Chemistry |
Volume | 58 |
Issue number | 12 |
DOIs | |
State | Published - 17 Jun 2019 |