Abstract
By considering the qualitative benefits associated with solution rheology and mechanical properties of polymer semiconductors, it is expected that polymer-based electronic devices will soon enter our daily lives as indispensable elements in a myriad of flexible and ultra low-cost flat panel displays. Despite more than a decade of research focused on designing and synthesizing state-of-the-art polymer semiconductors for improving charge transport characteristics, the current mobility values are still not sufficient for many practical applications. The confident mobility in excess of ∼10 cm2/V·s is the most important requirement for enabling the realization of the aforementioned near-future products. We report on an easily attainable donor-acceptor (D-A) polymer semiconductor: poly(thienoisoindigo-alt- naphthalene) (PTIIG-Np). An unprecedented mobility of 14.4 cm 2/V·s, by using PTIIG-Np with a high-k gate dielectric poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)), is achieved from a simple coating processing, which is of a magnitude that is very difficult to obtain with conventional TFTs by means of molecular engineering. This work, therefore, represents a major step toward truly viable plastic electronics.
Original language | English |
---|---|
Pages (from-to) | 9477-9483 |
Number of pages | 7 |
Journal | Journal of the American Chemical Society |
Volume | 136 |
Issue number | 26 |
DOIs | |
State | Published - 2 Jul 2014 |