Accurate Pixel-Wise Skin Segmentation Using Shallow Fully Convolutional Neural Network

Komal Minhas, Tariq M. Khan, Muhammad Arsalan, Syed Saud Naqvi, Mansoor Ahmed, Haroon Ahmed Khan, Muhammad Adnan Haider, Abdul Haseeb

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Skin segmentation plays an important role in human activity recognition, video surveillance, hand gesture identification, face detection, human tracking and robotic surgery. The accurate segmentation of the skin is necessary to recognize the human activity. Segmentation of skin is easy to realize in ideal situations because of similar backgrounds. But it becomes complicated because of presence of skin-like pixels, background illuminations, and certain changes in environment. These problems are addressed by incorporating preprocessing stages in current studies, but this raises the total cost of the system. However, there are some limitations associated with these methods in terms of accuracy and processing speed. In this work, we propose a skin semantic segmentation network (SSS-Net) that is able to capture the multi-scale contextual information and refines the segmentation results especially along object boundaries. Moreover our network helps to reduce the cost of the preprocessing as well. We have performed experiments on the five open datasets of human activity recognition for the segmentation of skin. Experimental results show SSS-Net outperforms the state-of-the-art methods in skin segmentation in terms of accuracies.

Original languageEnglish
Article number9174983
Pages (from-to)156314-156327
Number of pages14
JournalIEEE Access
Volume8
DOIs
StatePublished - 2020

Keywords

  • Skin segmentation
  • deepLabv3+
  • low-level semantic information
  • semantic segmentation

Fingerprint

Dive into the research topics of 'Accurate Pixel-Wise Skin Segmentation Using Shallow Fully Convolutional Neural Network'. Together they form a unique fingerprint.

Cite this