Advanced dual mixed refrigerant (DMR) natural gas liquefaction plant with liquid air: Focus on configuration and optimization

Haneul Mun, Dohee Kim, Jinwoo Park, Inkyu Lee

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

This study introduces a novel approach to integrating LNG cold energy into the dual mixed refrigerant (DMR) process, employing liquid air as a cold energy carrier. The DMR process is chosen for natural gas liquefaction due to its flexibility in adjusting mixed refrigerant compositions when external cold sources are utilized. Two configurations are investigated: the low-pressure liquid air (LPLA) process, which relies solely on heat exchange, and the high-pressure liquid air (HPLA) process, which involves the pressurization and expansion of liquid air. Additionally, two optimization strategies are explored: 'With Composition' (WC) optimization, which includes refrigerant composition as a variable, and 'Without Composition' (WOC) optimization, which does not. Utilizing liquid air reduces the load on the refrigeration cycle, leading to improved performance compared to the conventional DMR process. The air expansion generates additional power and cold energy, while WC optimization further reduces the flow rate of low-boiling point components, significantly lowering compression energy consumption. As a result, the DMR-HPLA-WC process achieves a 44.17 % reduction in energy consumption, an 8.7 % improvement in exergy efficiency, and a 37.63 % decrease in specific costs.

Original languageEnglish
Article number133747
JournalEnergy
Volume313
DOIs
StatePublished - 30 Dec 2024

Keywords

  • Cold energy recovery
  • Dual mixed refrigerant process
  • LNG supply chain
  • Liquid air
  • Natural gas liquefaction

Fingerprint

Dive into the research topics of 'Advanced dual mixed refrigerant (DMR) natural gas liquefaction plant with liquid air: Focus on configuration and optimization'. Together they form a unique fingerprint.

Cite this