TY - JOUR
T1 - Anchoring Ultrafine ZnFe2O4/C Nanoparticles on 3D ZnFe2O4 Nanoflakes for Boosting Cycle Stability and Energy Density of Flexible Asymmetric Supercapacitor
AU - Vadiyar, Madagonda M.
AU - Kolekar, Sanjay S.
AU - Chang, Jia Yaw
AU - Ye, Zhibin
AU - Ghule, Anil V.
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/8/9
Y1 - 2017/8/9
N2 - Heterostructure-based metal oxide thin films are recognized as the leading material for new generation, high-performance, stable, and flexible supercapacitors. However, morphologies, like nanoflakes, nanotubes, nanorods, and so forth, have been found to suffer from issues related to poor cycle stability and energy density. Thus, to circumvent these problems, herein, we have developed a low-cost, high surface area, and environmentally benign self-assembled ZnFe2O4 nanoflake@ZnFe2O4/C nanoparticle heterostructure electrode via anchoring ZnFe2O4 and carbon nanoparticles using an in situ biomediated green rotational chemical bath deposition approach for the first time. The synthesized ZnFe2O4 nanoflake@ZnFe2O4/C nanoparticle heterostructure thin films demonstrate an excellent specific capacitance of 1884 F g-1 at a current density of 5 mA cm-2. Additionally, all solid-state flexible asymmetric supercapacitor devices were designed on the basis of ZnFe2O4 nanoflake@ZnFe2O4/C nanoparticle heterostructures as the negative electrode and reduced graphene oxide and energy density of 81 Wh kg-1 at a power density of 3.9 kW kg-1. Similarly, the asymmetric device exhibits ultralong cycle stability of 35 000 cycles by losing only 2% capacitance. The excellent performance of the device is attributed to the self-assembled organization of the heterostructures. Moreover, the in situ biomediated green strategy is also applicable for the synthesis of other metal oxide and carbon-based heterostructure electrodes.
AB - Heterostructure-based metal oxide thin films are recognized as the leading material for new generation, high-performance, stable, and flexible supercapacitors. However, morphologies, like nanoflakes, nanotubes, nanorods, and so forth, have been found to suffer from issues related to poor cycle stability and energy density. Thus, to circumvent these problems, herein, we have developed a low-cost, high surface area, and environmentally benign self-assembled ZnFe2O4 nanoflake@ZnFe2O4/C nanoparticle heterostructure electrode via anchoring ZnFe2O4 and carbon nanoparticles using an in situ biomediated green rotational chemical bath deposition approach for the first time. The synthesized ZnFe2O4 nanoflake@ZnFe2O4/C nanoparticle heterostructure thin films demonstrate an excellent specific capacitance of 1884 F g-1 at a current density of 5 mA cm-2. Additionally, all solid-state flexible asymmetric supercapacitor devices were designed on the basis of ZnFe2O4 nanoflake@ZnFe2O4/C nanoparticle heterostructures as the negative electrode and reduced graphene oxide and energy density of 81 Wh kg-1 at a power density of 3.9 kW kg-1. Similarly, the asymmetric device exhibits ultralong cycle stability of 35 000 cycles by losing only 2% capacitance. The excellent performance of the device is attributed to the self-assembled organization of the heterostructures. Moreover, the in situ biomediated green strategy is also applicable for the synthesis of other metal oxide and carbon-based heterostructure electrodes.
KW - asymmetric supercapacitor
KW - bioextract
KW - heterostructure
KW - nanoflake@nanoparticle
KW - ZnFeO thin films
UR - http://www.scopus.com/inward/record.url?scp=85027258854&partnerID=8YFLogxK
U2 - 10.1021/acsami.7b06847
DO - 10.1021/acsami.7b06847
M3 - Article
C2 - 28714300
AN - SCOPUS:85027258854
SN - 1944-8244
VL - 9
SP - 26016
EP - 26028
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 31
ER -