Antibiotic copper oxide-curcumin nanomaterials for antibacterial applications

Kokkarachedu Varaprasad, Matias López, Dariela Núñez, Tippabattini Jayaramudu, Emmanuel Rotimi Sadiku, Chandrasekaran Karthikeyan, Patricio Oyarzúnc

Research output: Contribution to journalArticlepeer-review

64 Scopus citations

Abstract

In this investigation, novel antibiotic core-shell copper oxide-curcumin nanocomposite materials were designed and developed for biomedical applications. The antibiotic nanocomposite materials were synthesized by using sonication technique. In this process, the bandgap of the nanomaterial was controlled by using CuO and it was confirmed by UV-DRS. The formation of an antibiotic core-shell nanostructures and their surface morphologies were studied with XRD, SEM/TEM. EDS and ATR-FTIR confirmed the existence of copper oxide and biomolecule Cum in the antibiotic nanocomposites. In addition, it was recognised that Cum regulated sufficiently, the CuO antibacterial performance towards selected bacteria, viz: Escherichia coli, Staphylococcus aureus, Shigella dysenteriae and Streptococcus pneumoniae. Moreover, the nanomaterials synthesized did show noble antibacterial activity than the standard amoxicillin antibiotic. The finding of this investigation gives unalloyed support that the antibiotic nanocomposites can be highly promising materials for advanced biomedical applications.

Original languageEnglish
Article number112353
JournalJournal of Molecular Liquids
Volume300
DOIs
StatePublished - 15 Feb 2020

Keywords

  • Antibacterial activity
  • Antibiotics
  • CuO nanoparticles
  • Curcumin

Fingerprint

Dive into the research topics of 'Antibiotic copper oxide-curcumin nanomaterials for antibacterial applications'. Together they form a unique fingerprint.

Cite this