TY - JOUR
T1 - Association of extensive video gaming and cognitive function changes in brain-imaging studies of pro gamers and individuals with gaming disorder
T2 - Systematic literature review
AU - Choi, Eunhye
AU - Shin, Suk Ho
AU - Ryu, Jeh Kwang
AU - Jung, Kyu In
AU - Hyun, Yerin
AU - Kim, Jiyea
AU - Park, Min Hyeon
N1 - Publisher Copyright:
© Eunhye Choi, Suk-Ho Shin, Jeh-Kwang Ryu, Kyu-In Jung, Yerin Hyun, Jiyea Kim, Min-Hyeon Park. Originally published in JMIR Serious Games (https://games.jmir.org), 09.07.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Serious Games, is properly cited. The complete bibliographic information, a link to the original publication on https://games.jmir.org, as well as this copyright and license information must be included.
PY - 2021/7
Y1 - 2021/7
N2 - Background: The World Health Organization announced the inclusion of gaming disorder (GD) in the International Classification of Diseases, 11th Revision, despite some concerns. However, video gaming has been associated with the enhancement of cognitive function. Moreover, despite comparable extensive video gaming, pro gamers have not shown any of the negative symptoms that individuals with GD have reported. It is important to understand the association between extensive video gaming and alterations in brain regions more objectively. Objective: This study aimed to systematically explore the association between extensive video gaming and changes in cognitive function by focusing on pro gamers and individuals with GD. Methods: Studies about pro gamers and individuals with GD were searched for in the PubMed and Web of Science databases using relevant search terms, for example, “pro-gamers” and “(Internet) gaming disorder.” While studies for pro gamers were searched for without date restrictions, only studies published since 2013 about individuals with GD were included in search results. Article selection was conducted by following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Results: By following the PRISMA guidelines, 1903 records with unique titles were identified. Through the screening process of titles and abstracts, 86 full-text articles were accessed to determine their eligibility. A total of 18 studies were included in this systematic review. Among the included 18 studies, six studies included pro gamers as participants, one study included both pro gamers and individuals with GD, and 11 studies included individuals with GD. Pro gamers showed structural and functional alterations in brain regions (eg, the left cingulate cortex, the insula subregions, and the prefrontal regions). Cognitive function (eg, attention and sensorimotor function) and cognitive control improved in pro gamers. Individuals with GD showed structural and functional alterations in brain regions (eg, the striatum, the orbitofrontal cortex, and the amygdala) that were associated with impaired cognitive control and higher levels of craving video game playing. They also showed increased cortical thickness in the middle temporal cortex, which indicated the acquisition of better skills. Moreover, it was suggested that various factors (eg, gaming expertise, duration or severity of GD, and level of self-control) seemed to modulate the association of extensive video game playing with changes in cognitive function. Conclusions: Although a limited number of studies were identified that included pro gamers and/or individuals who reported showing symptoms of GD for more than 1 year, this review contributed to the objective understanding of the association between extensive video game playing and changes in cognitive function. Conducting studies with a longitudinal design or with various comparison groups in the future would be helpful in deepening the understanding of this association.
AB - Background: The World Health Organization announced the inclusion of gaming disorder (GD) in the International Classification of Diseases, 11th Revision, despite some concerns. However, video gaming has been associated with the enhancement of cognitive function. Moreover, despite comparable extensive video gaming, pro gamers have not shown any of the negative symptoms that individuals with GD have reported. It is important to understand the association between extensive video gaming and alterations in brain regions more objectively. Objective: This study aimed to systematically explore the association between extensive video gaming and changes in cognitive function by focusing on pro gamers and individuals with GD. Methods: Studies about pro gamers and individuals with GD were searched for in the PubMed and Web of Science databases using relevant search terms, for example, “pro-gamers” and “(Internet) gaming disorder.” While studies for pro gamers were searched for without date restrictions, only studies published since 2013 about individuals with GD were included in search results. Article selection was conducted by following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Results: By following the PRISMA guidelines, 1903 records with unique titles were identified. Through the screening process of titles and abstracts, 86 full-text articles were accessed to determine their eligibility. A total of 18 studies were included in this systematic review. Among the included 18 studies, six studies included pro gamers as participants, one study included both pro gamers and individuals with GD, and 11 studies included individuals with GD. Pro gamers showed structural and functional alterations in brain regions (eg, the left cingulate cortex, the insula subregions, and the prefrontal regions). Cognitive function (eg, attention and sensorimotor function) and cognitive control improved in pro gamers. Individuals with GD showed structural and functional alterations in brain regions (eg, the striatum, the orbitofrontal cortex, and the amygdala) that were associated with impaired cognitive control and higher levels of craving video game playing. They also showed increased cortical thickness in the middle temporal cortex, which indicated the acquisition of better skills. Moreover, it was suggested that various factors (eg, gaming expertise, duration or severity of GD, and level of self-control) seemed to modulate the association of extensive video game playing with changes in cognitive function. Conclusions: Although a limited number of studies were identified that included pro gamers and/or individuals who reported showing symptoms of GD for more than 1 year, this review contributed to the objective understanding of the association between extensive video game playing and changes in cognitive function. Conducting studies with a longitudinal design or with various comparison groups in the future would be helpful in deepening the understanding of this association.
KW - Brain
KW - Brain imaging
KW - Cognition
KW - Cognitive function
KW - Games
KW - Gaming
KW - Gaming disorder
KW - Pro gamers
KW - Video games
UR - http://www.scopus.com/inward/record.url?scp=85110043147&partnerID=8YFLogxK
U2 - 10.2196/25793
DO - 10.2196/25793
M3 - Review article
AN - SCOPUS:85110043147
SN - 2291-9279
VL - 9
JO - JMIR Serious Games
JF - JMIR Serious Games
IS - 3
M1 - e25793
ER -