Bidirectional Motion Estimation with Cyclic Cost Volume for High Dynamic Range Imaging

An Gia Vien, Seonghyun Park, Truong Thanh Nhat Mai, Gahyeon Kim, Chul Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

We propose a high dynamic range (HDR) imaging algorithm based on bidirectional motion estimation. First, we develop a motion estimation network with the cyclic cost volume and spatial attention maps to estimate accurate optical flows between input low dynamic range (LDR) images. Then, we develop the dynamic local fusion network that combines the warped and reference inputs to generate a synthesized image by exploiting local information. Finally, to further improve the synthesis performance, we develop the global refinement network that generates a residual image by exploiting global information. Experimental results on the dataset from the NTIRE 2022 HDR Challenge Track 1 (Low-complexity constrain) demonstrate the effectiveness of the proposed HDR image synthesis algorithm.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022
PublisherIEEE Computer Society
Pages1182-1189
Number of pages8
ISBN (Electronic)9781665487399
DOIs
StatePublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022 - New Orleans, United States
Duration: 19 Jun 202220 Jun 2022

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2022-June
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022
Country/TerritoryUnited States
CityNew Orleans
Period19/06/2220/06/22

Fingerprint

Dive into the research topics of 'Bidirectional Motion Estimation with Cyclic Cost Volume for High Dynamic Range Imaging'. Together they form a unique fingerprint.

Cite this