TY - JOUR
T1 - Bimetallic Cu/Fe MOF-Based Nanosheet Film via Binder-Free Drop-Casting Route
T2 - A Highly Efficient Urea-Electrolysis Catalyst
AU - Patil, Supriya A.
AU - Shrestha, Nabeen K.
AU - Inamdar, Akbar I.
AU - Bathula, Chinna
AU - Jung, Jungwon
AU - Hussain, Sajjad
AU - Nazir, Ghazanfar
AU - Kaseem, Mosab
AU - Im, Hyunsik
AU - Kim, Hyungsang
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/6/1
Y1 - 2022/6/1
N2 - Developing efficient electrocatalysts for urea oxidation reaction (UOR) can be a promising alternative strategy to substitute the sluggish oxygen evolution reaction (OER), thereby producing hydrogen at a lower cell-voltage. Herein, we synthesized a binder-free thin film of ultrathin sheets of bimetallic Cu-Fe-based metal–organic frameworks (Cu/Fe-MOFs) on a nickel foam via a drop-casting route. In addition to the scalable route, the drop-casted film-electrode demonstrates the lower UOR potentials of 1.59, 1.58, 1.54, 1.51, 1.43 and 1.37 V vs. RHE to achieve the current densities of 2500, 2000, 1000, 500, 100 and 10 mA cm−2, respectively. These UOR potentials are relatively lower than that acquired by the pristine Fe-MOF-based film-electrode synthesized via a similar route. For example, at 1.59 V vs. RHE, the Cu/Fe-MOF electrode exhibits a remarkably ultra-high anodic current density of 2500 mA cm—2, while the pristine Fe-MOF electrode exhibits only 949.10 mA cm−2. It is worth noting that the Cu/Fe-MOF electrode at this potential exhibits an OER current density of only 725 mA cm—2, which is far inconsequential as compared to the UOR current densities, implying the profound impact of the bimetallic cores of the MOFs on catalyzing UOR. In addition, the Cu/Fe-MOF electrode also exhibits a long-term electrochemical robustness during UOR.
AB - Developing efficient electrocatalysts for urea oxidation reaction (UOR) can be a promising alternative strategy to substitute the sluggish oxygen evolution reaction (OER), thereby producing hydrogen at a lower cell-voltage. Herein, we synthesized a binder-free thin film of ultrathin sheets of bimetallic Cu-Fe-based metal–organic frameworks (Cu/Fe-MOFs) on a nickel foam via a drop-casting route. In addition to the scalable route, the drop-casted film-electrode demonstrates the lower UOR potentials of 1.59, 1.58, 1.54, 1.51, 1.43 and 1.37 V vs. RHE to achieve the current densities of 2500, 2000, 1000, 500, 100 and 10 mA cm−2, respectively. These UOR potentials are relatively lower than that acquired by the pristine Fe-MOF-based film-electrode synthesized via a similar route. For example, at 1.59 V vs. RHE, the Cu/Fe-MOF electrode exhibits a remarkably ultra-high anodic current density of 2500 mA cm—2, while the pristine Fe-MOF electrode exhibits only 949.10 mA cm−2. It is worth noting that the Cu/Fe-MOF electrode at this potential exhibits an OER current density of only 725 mA cm—2, which is far inconsequential as compared to the UOR current densities, implying the profound impact of the bimetallic cores of the MOFs on catalyzing UOR. In addition, the Cu/Fe-MOF electrode also exhibits a long-term electrochemical robustness during UOR.
KW - bimetallic
KW - binder-free film
KW - metal–organic framework
KW - nanosheets
KW - ultra-high current
KW - urea-electrolysis
UR - http://www.scopus.com/inward/record.url?scp=85131152490&partnerID=8YFLogxK
U2 - 10.3390/nano12111916
DO - 10.3390/nano12111916
M3 - Article
AN - SCOPUS:85131152490
SN - 2079-4991
VL - 12
JO - Nanomaterials
JF - Nanomaterials
IS - 11
M1 - 1916
ER -