Biofabrication of streptomycin-conjugated calcium phosphate nanoparticles using red ginseng extract and investigation of their antibacterial potential

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Conjugation of nanoparticles (NPs) with antibiotics for treating multidrug resistant pathogens has been enormously studied now a days. In the current investigation, calcium phosphate (CaP) NPs were produced by co-precipitation using red ginseng extract as the reducing agent and were conjugated to the antibiotic streptomycin to form streptomycin-conjugated NPs (CPG-S NPs). The CPG-S NPs antibacterial activity was evaluated in this study against eight plant and five foodborne pathogenic bacteria. The synthesized CPG-S NPs were characterized by UV-VIS spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction, and thermogravimetric and differential thermogravimetric analysis. CPG-S NPs exhibited promising antibacterial activity against all eight plant pathogenic bacteria and three of the five foodborne pathogenic bacteria tested; the diameter of inhibition zones ranged between 9.74-16.95 mm and 9.82-15.84 mm, respectively. CPG-S NPs displayed 50-100 μg/mL of minimum inhibitory concentration and 100 μg/mL of minimum bactericidal concentration against the plant and foodborne pathogenic bacterial strains, respectively. Furthermore, the SEM image of bacteria treated with CPG-S NPs displayed cells with a ruptured cell wall and fewer cells compared to the SEM image of untreated control bacteria displaying uniform and intact cells. SEM confirmed that CPG-S NPs degraded the bacterial cell wall and membrane resulting in lysed bacterial cells. In conclusion, the results suggest that CPG-S NPs could be effectively utilized in formulating drugs to treat bacterial plant or dental diseases and in manufacturing dental products such as toothpaste, mouthwashes, and artificial teeth.

Original languageEnglish
Article numbere0217318
JournalPLoS ONE
Volume14
Issue number6
DOIs
StatePublished - Jun 2019

Fingerprint

Dive into the research topics of 'Biofabrication of streptomycin-conjugated calcium phosphate nanoparticles using red ginseng extract and investigation of their antibacterial potential'. Together they form a unique fingerprint.

Cite this