TY - JOUR
T1 - Changes in structural and rheological properties of guar gum particles in fluidized-bed agglomeration
T2 - Effect of sucrose binder concentration
AU - Lee, Donghyeon
AU - Yoo, Byoungseung
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/1/1
Y1 - 2022/1/1
N2 - Fluidized-bed agglomeration (FBA) is known to modify the structure and rheology of food powders. In this study, guar gum (GG) powders with various concentrations of sucrose binder (0%, 10%, 20%, or 30%) were subjected to fluidized-bed agglomeration. Subsequently, changes in the characteristics of the GG powders were evaluated by using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size distribution (PSD) analysis, and rheological and dispersibility measurements. SEM images and FTIR spectra revealed surface morphology changes and structural modification, respectively, in the original GG powder after FBA, although the changes observed in FTIR spectra were only slightly dependent on sucrose concentration at low concentrations (0–20%). XRD patterns confirmed that the crystallinity of the GG powder was affected by FBA, but not greatly so by binder concentration. The PSD results showed that the GG particle size was increased by FBA and there was a clear relationship between sucrose concentration (10–30%) and mean particle size. The rheological behavior and dispersibility of GG (properties that are known to be affected by the structure of a powder) were also influenced by sucrose concentration. To sum up, FBA and the concentration of sucrose binder used can serve as factors for modifying GG powder.
AB - Fluidized-bed agglomeration (FBA) is known to modify the structure and rheology of food powders. In this study, guar gum (GG) powders with various concentrations of sucrose binder (0%, 10%, 20%, or 30%) were subjected to fluidized-bed agglomeration. Subsequently, changes in the characteristics of the GG powders were evaluated by using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size distribution (PSD) analysis, and rheological and dispersibility measurements. SEM images and FTIR spectra revealed surface morphology changes and structural modification, respectively, in the original GG powder after FBA, although the changes observed in FTIR spectra were only slightly dependent on sucrose concentration at low concentrations (0–20%). XRD patterns confirmed that the crystallinity of the GG powder was affected by FBA, but not greatly so by binder concentration. The PSD results showed that the GG particle size was increased by FBA and there was a clear relationship between sucrose concentration (10–30%) and mean particle size. The rheological behavior and dispersibility of GG (properties that are known to be affected by the structure of a powder) were also influenced by sucrose concentration. To sum up, FBA and the concentration of sucrose binder used can serve as factors for modifying GG powder.
KW - Crystallinity determination
KW - Dispersion behavior
KW - Fluidized-bed agglomeration
KW - FTIR spectrophotometry
KW - Particle size
UR - http://www.scopus.com/inward/record.url?scp=85122027892&partnerID=8YFLogxK
U2 - 10.3390/foods11010073
DO - 10.3390/foods11010073
M3 - Article
AN - SCOPUS:85122027892
SN - 2304-8158
VL - 11
JO - Foods
JF - Foods
IS - 1
M1 - 73
ER -