Charge Transport Modulation of a Flexible Quantum Dot Solar Cell Using a Piezoelectric Effect

Yuljae Cho, Paul Giraud, Bo Hou, Young Woo Lee, John Hong, Sanghyo Lee, Sangyeon Pak, Juwon Lee, Jae Eun Jang, Stephen M. Morris, Jung Inn Sohn, Seung Nam Cha, Jong Min Kim

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

Colloidal quantum dots are promising materials for flexible solar cells, as they have a large absorption coefficient at visible and infrared wavelengths, a band gap that can be tuned across the solar spectrum, and compatibility with solution processing. However, the performance of flexible solar cells can be degraded by the loss of charge carriers due to recombination pathways that exist at a junction interface as well as the strained interface of the semiconducting layers. The modulation of the charge carrier transport by the piezoelectric effect is an effective way of resolving and improving the inherent material and structural defects. By inserting a porous piezoelectric poly(vinylidenefluoride-trifluoroethylene) layer so as to generate a converging electric field, it is possible to modulate the junction properties and consequently enhance the charge carrier behavior at the junction. This study shows that due to a reduction in the recombination and an improvement in the carrier extraction, a 38% increase in the current density along with a concomitant increase of 37% in the power conversion efficiency of flexible quantum dots solar cells can be achieved by modulating the junction properties using the piezoelectric effect.

Original languageEnglish
Article number1700809
JournalAdvanced Energy Materials
Volume8
Issue number3
DOIs
StatePublished - 25 Jan 2018

Keywords

  • charge transport modulation
  • flexible solar cells
  • lead sulfide quantum dots
  • piezoelectric effect

Fingerprint

Dive into the research topics of 'Charge Transport Modulation of a Flexible Quantum Dot Solar Cell Using a Piezoelectric Effect'. Together they form a unique fingerprint.

Cite this