TY - JOUR
T1 - Class 3 inhibition of hERG K+ channel by caffeic acid phenethyl ester (CAPE) and curcumin
AU - Choi, Seong Woo
AU - Kim, Kyung Su
AU - Shin, Dong Hoon
AU - Yoo, Hae Young
AU - Choe, Han
AU - Ko, Tae Hee
AU - Youm, Jae Boum
AU - Kim, Woo Kyung
AU - Zhang, Yin Hua
AU - Kim, Sung Joon
PY - 2013/8
Y1 - 2013/8
N2 - Human ether-á-go-go-related gene (hERG) K+ channel current (I hERG ) is inhibited by various compounds and genetic mutations, potentially resulting in cardiac arrhythmia. Here, we investigated effects of caffeic acid phenethyl ester (CAPE) and curcumin, two natural anti-inflammatory polyphenols, on I hERG in HEK-293 cells overexpressed with hERG. CAPE dose-dependently decreased repolarization tail current of hERG (I hERG,tail; IC50, 10.6 ± 0.5 μM). CAPE also shifted half-activation voltage (V 1/2) to the left (from -17.5 to -26.5 mV) and accelerated activation and inactivation kinetics. The CAPE inhibition of I hERG,tail was not attenuated in the pore-blocker site mutants of hERG (Y652A and F656A). A point mutation of Cys723 (C723S) mimicked the effects of CAPE and caused a left shift of V 1/2 and acceleration of I hERG,tail deactivation. However, I hERG,tail inhibition by CAPE was still observed in C723S. Taken together, CAPE inhibits hERG channel by class 3 mechanism, i.e., modification of gating, not by blocking the pore. Curcumin induced changes of I hERG similar to those of CAPE, while additional interaction with pore-blocking sites was suggested from attenuated I hERG,tail inhibition in Y652A and F656A. Interestingly, I hERG induced by human action potential voltage clamp was increased by CAPE while decreased by curcumin. Mathematical simulation of action potential derived from the experimental results of CAPE and curcumin supports that CAPE, but not curcumin, would induce shortening of AP duration by facilitation of I hERG . The above results revealed intriguing roles of Cys723 in hERG kinetics and suggested that conventional drug screening by using step pulse protocol for I hERG,tail would overlook the hERG kinetic modulations that could compensate the decrease of I hERG,tail.
AB - Human ether-á-go-go-related gene (hERG) K+ channel current (I hERG ) is inhibited by various compounds and genetic mutations, potentially resulting in cardiac arrhythmia. Here, we investigated effects of caffeic acid phenethyl ester (CAPE) and curcumin, two natural anti-inflammatory polyphenols, on I hERG in HEK-293 cells overexpressed with hERG. CAPE dose-dependently decreased repolarization tail current of hERG (I hERG,tail; IC50, 10.6 ± 0.5 μM). CAPE also shifted half-activation voltage (V 1/2) to the left (from -17.5 to -26.5 mV) and accelerated activation and inactivation kinetics. The CAPE inhibition of I hERG,tail was not attenuated in the pore-blocker site mutants of hERG (Y652A and F656A). A point mutation of Cys723 (C723S) mimicked the effects of CAPE and caused a left shift of V 1/2 and acceleration of I hERG,tail deactivation. However, I hERG,tail inhibition by CAPE was still observed in C723S. Taken together, CAPE inhibits hERG channel by class 3 mechanism, i.e., modification of gating, not by blocking the pore. Curcumin induced changes of I hERG similar to those of CAPE, while additional interaction with pore-blocking sites was suggested from attenuated I hERG,tail inhibition in Y652A and F656A. Interestingly, I hERG induced by human action potential voltage clamp was increased by CAPE while decreased by curcumin. Mathematical simulation of action potential derived from the experimental results of CAPE and curcumin supports that CAPE, but not curcumin, would induce shortening of AP duration by facilitation of I hERG . The above results revealed intriguing roles of Cys723 in hERG kinetics and suggested that conventional drug screening by using step pulse protocol for I hERG,tail would overlook the hERG kinetic modulations that could compensate the decrease of I hERG,tail.
KW - Caffeic acid phenethyl ester
KW - Curcumin
KW - Electrophile
KW - hERG K channel
UR - http://www.scopus.com/inward/record.url?scp=84881482071&partnerID=8YFLogxK
U2 - 10.1007/s00424-013-1239-7
DO - 10.1007/s00424-013-1239-7
M3 - Article
C2 - 23440458
AN - SCOPUS:84881482071
SN - 0031-6768
VL - 465
SP - 1121
EP - 1134
JO - Pflugers Archiv European Journal of Physiology
JF - Pflugers Archiv European Journal of Physiology
IS - 8
ER -