CNTs supported NiCo2O4 nanostructures as advanced composite for high performance supercapacitors

Rajendra Kumar Nare, Sivalingam Ramesh, Vijay Kakani, Yuvaraj Haldorai, Chandrasekaran Karthikeyan, Basivi Praveen Kumar, Nadavala Siva Kumar, Mohammad Asif, S. Naresh Kumar, D. Prakash Babu, K. Ramakrishna Reddy, Visweswara Rao Pasupuleti

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

This study examines the most recent advancements in carbon nanotube (CNT) supercapacitors and related composites. The goal is to provide a thorough selfless of the benefits and drawbacks of energy storage materials connected to carbon nanotubes and to identify strategies for enhancing supercapacitor performance. Ultrasonication aided hydrothermal technique was used to decorate a composite made of nitrogen doped carbon nanotubes and porous NiCo2O4 nanomaterial. For use in supercapacitor applications, the electrochemical characteristics of the produced composite electrode materials are examined. The synthesized composite electrode exhibits cycling stability, preserving about 98.5 % of the initial capacitance after 5000 cycles, and a rising specific capacitance of 1191 F g−1 at the current density of 1 A g−1. Due to the integration of N-MWCNT, their conductive nature, and active surface area, specific capacitances have enhanced. Composites would surely be appealing for high performance supercapacitor application because of their exceptional capacitive performance.

Original languageEnglish
Article number110660
JournalDiamond and Related Materials
Volume141
DOIs
StatePublished - Jan 2024

Keywords

  • Carbon nanotubes
  • Composite
  • Electrochemical properties
  • NiCoO

Fingerprint

Dive into the research topics of 'CNTs supported NiCo2O4 nanostructures as advanced composite for high performance supercapacitors'. Together they form a unique fingerprint.

Cite this