TY - JOUR
T1 - Comparative assessment of antioxidant, anti-diabetic and cytotoxic effects of three peel/ shell food waste extract-mediated silver nanoparticles
AU - Das, Gitishree
AU - Shin, Han Seung
AU - Patra, Jayanta Kumar
N1 - Publisher Copyright:
© 2020 Das et al.
PY - 2020
Y1 - 2020
N2 - Background: The natural food waste peels/shells discarded as waste materials are ample sources of natural bioactive compounds. The natural food waste mediated silver (Ag) nanoparticle (NPs) synthesis will be advantageous over chemical synthesis. Materials and Methods: Using the various phytochemical-rich ripe P. americana peel (PAP), fresh Beta vulgaris peel (BVP), and rawArachis hypogaea shell (AHS) extracts, the bio-synthesis of PAP-AgNPs, BVP-AgNPs, and AHS-AgNPs, respectively, were carried out and its characterization was completed by standard procedures. The three biosynthesized AgNP’s multiple biological effects were accomplished by evaluating their cytotoxicity, antidiabetic, and antioxidant effects. Results: The biosynthesis of the three generated Ag nanoparticles was confirmed through UV-vis spectrum analysis while the X-ray diffraction outlines revealed the generated AgNPs nature. The morphological structure and elemental information of the three AgNPs were obtained through SEM (scanning electron microscopy) and EDX (energy-dispersive X-ray) study. Multiple biological assays exhibited that the three generated AgNPs have significant cytotoxic, antidiabetic, and moderate antioxidant activity. In a comparative analysis, the PAP-AgNPs displayed higher anticancer potential than BVP and AHS-AgNPs, whereas AHS-AgNPs exhibited a higher antidiabetic effect with the lowest IC50 value (1.68 µg/mL) than PAP and BVP AgNPs. All three generated AgNPs displayed moderate antioxidant effects, among them BVP-AgNPs were more effective than PAP and AHS AgNPs. More than two effects of the three biosynthesized AgNPs specifies that they have ample perspective in therapeutic applications in pharmaceutical and other related industries in controlling cancer and diabetes.
AB - Background: The natural food waste peels/shells discarded as waste materials are ample sources of natural bioactive compounds. The natural food waste mediated silver (Ag) nanoparticle (NPs) synthesis will be advantageous over chemical synthesis. Materials and Methods: Using the various phytochemical-rich ripe P. americana peel (PAP), fresh Beta vulgaris peel (BVP), and rawArachis hypogaea shell (AHS) extracts, the bio-synthesis of PAP-AgNPs, BVP-AgNPs, and AHS-AgNPs, respectively, were carried out and its characterization was completed by standard procedures. The three biosynthesized AgNP’s multiple biological effects were accomplished by evaluating their cytotoxicity, antidiabetic, and antioxidant effects. Results: The biosynthesis of the three generated Ag nanoparticles was confirmed through UV-vis spectrum analysis while the X-ray diffraction outlines revealed the generated AgNPs nature. The morphological structure and elemental information of the three AgNPs were obtained through SEM (scanning electron microscopy) and EDX (energy-dispersive X-ray) study. Multiple biological assays exhibited that the three generated AgNPs have significant cytotoxic, antidiabetic, and moderate antioxidant activity. In a comparative analysis, the PAP-AgNPs displayed higher anticancer potential than BVP and AHS-AgNPs, whereas AHS-AgNPs exhibited a higher antidiabetic effect with the lowest IC50 value (1.68 µg/mL) than PAP and BVP AgNPs. All three generated AgNPs displayed moderate antioxidant effects, among them BVP-AgNPs were more effective than PAP and AHS AgNPs. More than two effects of the three biosynthesized AgNPs specifies that they have ample perspective in therapeutic applications in pharmaceutical and other related industries in controlling cancer and diabetes.
KW - Antidiabetic
KW - Antioxidant
KW - Cytotoxicity
KW - Food wastes
KW - Peels/shells
KW - Silver nanoparticles
UR - http://www.scopus.com/inward/record.url?scp=85096147508&partnerID=8YFLogxK
U2 - 10.2147/IJN.S277625
DO - 10.2147/IJN.S277625
M3 - Article
C2 - 33235452
AN - SCOPUS:85096147508
SN - 1176-9114
VL - 15
SP - 9075
EP - 9088
JO - International Journal of Nanomedicine
JF - International Journal of Nanomedicine
ER -