TY - JOUR
T1 - Comparative genomic analyses of four novel Ramlibacter species and the cellulose-degrading properties of Ramlibacter cellulosilyticus sp. nov.
AU - Kang, Minchung
AU - Chhetri, Geeta
AU - Kim, Inhyup
AU - So, Yoonseop
AU - Seo, Taegun
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - In this study, four novel bacterial strains, USB13T, AW1T, GTP1T, and HM2T, were isolated from various environments in Busan and Jeju Island, Republic of Korea. The 16S rRNA sequencing results indicated that the four novel strains belong to the genus Ramlibacter. All four strains were tested for their potential cellulolytic properties, where strain USB13T was identified as the only novel bacterium and the first within its genus to show cellulolytic activity. When tested, the highest activities of endoglucanase, exoglucanase, β-glucosidase, and filter paper cellulase (FPCase) were 1.91 IU/mL, 1.77 IU/mL, 0.76 IU/mL, and 1.12 IU/mL, respectively at pH 6.0. Comparisons of draft whole genome sequences (WGS) were also made using average nucleotide identity, digital DNA-DNA hybridization values, and average amino acid identity values, while whole genome comparison was visualized using the BLAST Ring Image Generator. The G + C contents of the strains ranged from 67.9 to 69.9%, while genome sizes ranged from 4.31 to 6.15 Mbp. Based on polyphasic evidence, the novel strains represent four new species within the genus Ramlibacter, for which the names Ramlibacter cellulosilyticus sp. nov. (type strain, USB13T = KACC 21656T = NBRC 114839T) Ramlibacter aurantiacus sp. nov. (type strain, AW1T = KACC 21544T = NBRC 114862T), Ramlibacter albus sp. nov. (type strain, GTP1T = KACC 21702T = NBRC 114488T), and Ramlibacter pallidus sp. nov. (type strain, HM2T = KCTC 82557T = NBRC 114489T) are proposed.
AB - In this study, four novel bacterial strains, USB13T, AW1T, GTP1T, and HM2T, were isolated from various environments in Busan and Jeju Island, Republic of Korea. The 16S rRNA sequencing results indicated that the four novel strains belong to the genus Ramlibacter. All four strains were tested for their potential cellulolytic properties, where strain USB13T was identified as the only novel bacterium and the first within its genus to show cellulolytic activity. When tested, the highest activities of endoglucanase, exoglucanase, β-glucosidase, and filter paper cellulase (FPCase) were 1.91 IU/mL, 1.77 IU/mL, 0.76 IU/mL, and 1.12 IU/mL, respectively at pH 6.0. Comparisons of draft whole genome sequences (WGS) were also made using average nucleotide identity, digital DNA-DNA hybridization values, and average amino acid identity values, while whole genome comparison was visualized using the BLAST Ring Image Generator. The G + C contents of the strains ranged from 67.9 to 69.9%, while genome sizes ranged from 4.31 to 6.15 Mbp. Based on polyphasic evidence, the novel strains represent four new species within the genus Ramlibacter, for which the names Ramlibacter cellulosilyticus sp. nov. (type strain, USB13T = KACC 21656T = NBRC 114839T) Ramlibacter aurantiacus sp. nov. (type strain, AW1T = KACC 21544T = NBRC 114862T), Ramlibacter albus sp. nov. (type strain, GTP1T = KACC 21702T = NBRC 114488T), and Ramlibacter pallidus sp. nov. (type strain, HM2T = KCTC 82557T = NBRC 114489T) are proposed.
UR - http://www.scopus.com/inward/record.url?scp=85143567822&partnerID=8YFLogxK
U2 - 10.1038/s41598-022-25718-w
DO - 10.1038/s41598-022-25718-w
M3 - Article
C2 - 36482214
AN - SCOPUS:85143567822
SN - 2045-2322
VL - 12
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 21233
ER -