TY - JOUR
T1 - Crop and Weed Segmentation and Fractal Dimension Estimation Using Small Training Data in Heterogeneous Data Environment
AU - Akram, Rehan
AU - Hong, Jin Seong
AU - Kim, Seung Gu
AU - Sultan, Haseeb
AU - Usman, Muhammad
AU - Gondal, Hafiz Ali Hamza
AU - Tariq, Muhammad Hamza
AU - Ullah, Nadeem
AU - Park, Kang Ryoung
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/5
Y1 - 2024/5
N2 - The segmentation of crops and weeds from camera-captured images is a demanding research area for advancing agricultural and smart farming systems. Previously, the segmentation of crops and weeds was conducted within a homogeneous data environment where training and testing data were from the same database. However, in the real-world application of advancing agricultural and smart farming systems, it is often the case of a heterogeneous data environment where a system trained with one database should be used for testing with a different database without additional training. This study pioneers the use of heterogeneous data for crop and weed segmentation, addressing the issue of degraded accuracy. Through adjusting the mean and standard deviation, we minimize the variability in pixel value and contrast, enhancing segmentation robustness. Unlike previous methods relying on extensive training data, our approach achieves real-world applicability with just one training sample for deep learning-based semantic segmentation. Moreover, we seamlessly integrated a method for estimating fractal dimensions into our system, incorporating it as an end-to-end task to provide important information on the distributional characteristics of crops and weeds. We evaluated our framework using the BoniRob dataset and the CWFID. When trained with the BoniRob dataset and tested with the CWFID, we obtained a mean intersection of union (mIoU) of 62% and an F1-score of 75.2%. Furthermore, when trained with the CWFID and tested with the BoniRob dataset, we obtained an mIoU of 63.7% and an F1-score of 74.3%. We confirmed that these values are higher than those obtained by state-of-the-art methods.
AB - The segmentation of crops and weeds from camera-captured images is a demanding research area for advancing agricultural and smart farming systems. Previously, the segmentation of crops and weeds was conducted within a homogeneous data environment where training and testing data were from the same database. However, in the real-world application of advancing agricultural and smart farming systems, it is often the case of a heterogeneous data environment where a system trained with one database should be used for testing with a different database without additional training. This study pioneers the use of heterogeneous data for crop and weed segmentation, addressing the issue of degraded accuracy. Through adjusting the mean and standard deviation, we minimize the variability in pixel value and contrast, enhancing segmentation robustness. Unlike previous methods relying on extensive training data, our approach achieves real-world applicability with just one training sample for deep learning-based semantic segmentation. Moreover, we seamlessly integrated a method for estimating fractal dimensions into our system, incorporating it as an end-to-end task to provide important information on the distributional characteristics of crops and weeds. We evaluated our framework using the BoniRob dataset and the CWFID. When trained with the BoniRob dataset and tested with the CWFID, we obtained a mean intersection of union (mIoU) of 62% and an F1-score of 75.2%. Furthermore, when trained with the CWFID and tested with the BoniRob dataset, we obtained an mIoU of 63.7% and an F1-score of 74.3%. We confirmed that these values are higher than those obtained by state-of-the-art methods.
KW - deep learning
KW - fractal dimension estimation
KW - heterogeneous data
KW - small training data
KW - weed and crop semantic segmentation
UR - http://www.scopus.com/inward/record.url?scp=85194289936&partnerID=8YFLogxK
U2 - 10.3390/fractalfract8050285
DO - 10.3390/fractalfract8050285
M3 - Article
AN - SCOPUS:85194289936
SN - 2504-3110
VL - 8
JO - Fractal and Fractional
JF - Fractal and Fractional
IS - 5
M1 - 285
ER -