TY - JOUR
T1 - Cryogenic carbon capture as the bridge for integrating hydrogen production and Liquefaction
T2 - Enhancing the sustainability of blue hydrogen Production-to-Storage systems
AU - Ahn, Doyeong
AU - Noh, Wonjun
AU - Park, Jinwoo
AU - Lee, Inkyu
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2025/1/15
Y1 - 2025/1/15
N2 - Hydrogen is one of the promising energy vectors for sustainable energy systems because of its carbon-free combustion and high mass-energy density. However, most hydrogen production processes remain carbon-intensive, and the low volumetric energy density of hydrogen significantly hinders storage efficiency. To reduce carbon emissions during hydrogen production, amine-based chemical absorption methods are commonly employed. However, these methods face challenges, such as low capture efficiency and high energy demands. To improve storage efficiency, hydrogen liquefaction methods have been explored to reduce volume. Nevertheless, liquefaction methods require cryogenic operating temperatures, which result in high power consumption and substantial cost burdens. To address these issues, this study proposes a novel system that integrates hydrogen production and liquefaction processes by introducing cryogenic carbon capture (CCC). In the proposed system, CCC obtains cold energy through integration with the precooling cycle of the hydrogen liquefaction process, eliminating the need for additional refrigeration units. Consequently, the integrated system achieves a 99.99% carbon capture rate, with a 27.5% reduction in overall energy consumption. Moreover, the economic feasibility increased by 7.87%, and the CO2 avoidance cost decreased by 58.5%. The carbon-techno-economic analysis results revealed that the carbon capture penalty can be offset at 52.5% lower carbon tax rates. Additionally, scenario studies revealed that the proposed system demonstrates 41.9% higher economic performance than liquefied green hydrogen systems while maintaining comparable environmental benefits.
AB - Hydrogen is one of the promising energy vectors for sustainable energy systems because of its carbon-free combustion and high mass-energy density. However, most hydrogen production processes remain carbon-intensive, and the low volumetric energy density of hydrogen significantly hinders storage efficiency. To reduce carbon emissions during hydrogen production, amine-based chemical absorption methods are commonly employed. However, these methods face challenges, such as low capture efficiency and high energy demands. To improve storage efficiency, hydrogen liquefaction methods have been explored to reduce volume. Nevertheless, liquefaction methods require cryogenic operating temperatures, which result in high power consumption and substantial cost burdens. To address these issues, this study proposes a novel system that integrates hydrogen production and liquefaction processes by introducing cryogenic carbon capture (CCC). In the proposed system, CCC obtains cold energy through integration with the precooling cycle of the hydrogen liquefaction process, eliminating the need for additional refrigeration units. Consequently, the integrated system achieves a 99.99% carbon capture rate, with a 27.5% reduction in overall energy consumption. Moreover, the economic feasibility increased by 7.87%, and the CO2 avoidance cost decreased by 58.5%. The carbon-techno-economic analysis results revealed that the carbon capture penalty can be offset at 52.5% lower carbon tax rates. Additionally, scenario studies revealed that the proposed system demonstrates 41.9% higher economic performance than liquefied green hydrogen systems while maintaining comparable environmental benefits.
KW - Blue hydrogen production
KW - Cryogenic carbon capture
KW - Hydrogen liquefaction
KW - Hydrogen production-to-storage system
KW - Process integration
KW - System design
UR - http://www.scopus.com/inward/record.url?scp=85212949974&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2024.158811
DO - 10.1016/j.cej.2024.158811
M3 - Article
AN - SCOPUS:85212949974
SN - 1385-8947
VL - 504
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 158811
ER -