TY - JOUR
T1 - Cyclic depsipeptide mycotoxin exposure may cause human endocrine disruption
T2 - Evidence from OECD in vitro stably transfected transcriptional activation assays
AU - Park, Yooheon
AU - Lee, Hee Seok
N1 - Publisher Copyright:
© 2020 Elsevier Inc.
PY - 2021/3
Y1 - 2021/3
N2 - The presence of cyclic depsipeptide mycotoxins in foods and feedstuffs could potentially cause endocrine disrupting effects on humans and wildlife by their inhibition of active steroidogenesis. Therefore, we attempted to assess the human estrogen receptor (ER) and androgen receptor (AR) agonistic/antagonistic effects of representative cyclic depsipeptide mycotoxins, enniatin A1 (ENN A1), and enniatin B1 (ENN B1), by OECD Performand Based Test Guideline (PBTG) No.455, VM7Luc ER transcriptional activation (TA) assay and OECD TG No. 458, 22Rv1/MMTV_GR-KO AR TA assay. No tested cyclic depsipeptide mycotoxins were found to be ER and AR agonists in VM7Luc ER TA and 22Rv1/MMTV_GR-KO AR TA assays. On the other hand, ENN A1, and ENN B1 exhibited the ER and AR antagonistic effects with IC30 and IC50 values in both TA assays. These two cyclic depsipeptide mycotoxins, which were determined as ER and AR antagonists by two in vitro assays, bound to ERα, and AR. Then ENN A1, and ENN B1 inhibited the dimerization of ERα, and AR. These results, for the first time indicated that ENN A1, and ENN B1 could have potential endocrine disrupting effects mediated by interaction of ERα and AR using international standard testing methods to determine the potential endocrine disrupting chemical.
AB - The presence of cyclic depsipeptide mycotoxins in foods and feedstuffs could potentially cause endocrine disrupting effects on humans and wildlife by their inhibition of active steroidogenesis. Therefore, we attempted to assess the human estrogen receptor (ER) and androgen receptor (AR) agonistic/antagonistic effects of representative cyclic depsipeptide mycotoxins, enniatin A1 (ENN A1), and enniatin B1 (ENN B1), by OECD Performand Based Test Guideline (PBTG) No.455, VM7Luc ER transcriptional activation (TA) assay and OECD TG No. 458, 22Rv1/MMTV_GR-KO AR TA assay. No tested cyclic depsipeptide mycotoxins were found to be ER and AR agonists in VM7Luc ER TA and 22Rv1/MMTV_GR-KO AR TA assays. On the other hand, ENN A1, and ENN B1 exhibited the ER and AR antagonistic effects with IC30 and IC50 values in both TA assays. These two cyclic depsipeptide mycotoxins, which were determined as ER and AR antagonists by two in vitro assays, bound to ERα, and AR. Then ENN A1, and ENN B1 inhibited the dimerization of ERα, and AR. These results, for the first time indicated that ENN A1, and ENN B1 could have potential endocrine disrupting effects mediated by interaction of ERα and AR using international standard testing methods to determine the potential endocrine disrupting chemical.
KW - Agonist
KW - Androgen receptor
KW - Antagonist
KW - Enniatins
KW - Estrogen receptor
KW - Transcriptional activation assay
UR - http://www.scopus.com/inward/record.url?scp=85098569263&partnerID=8YFLogxK
U2 - 10.1016/j.reprotox.2020.12.014
DO - 10.1016/j.reprotox.2020.12.014
M3 - Article
C2 - 33346041
AN - SCOPUS:85098569263
SN - 0890-6238
VL - 100
SP - 52
EP - 59
JO - Reproductive Toxicology
JF - Reproductive Toxicology
ER -