Data Augmentation Techniques Using Text-to-Image Diffusion Models for Enhanced Data Diversity

Jeongmin Shin, Hyeryung Jang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Data augmentation is a widely used technique to enhance the performance of deep learning models. However, traditional augmentation methods, dependent solely on original data, often fall short in maintaining data diversity and generalization capabilities. In this paper, we propose a novel data augmentation approach leveraging pretrained text-to-image diffusion models to generate diverse and contextually rich images. Our approach integrates three advanced techniques: rich-text prompts, multi-object image generation, and inpainting. We demonstrate the effectiveness of these methods through extensive experiments on the Oxford-IIIT Pets and Caltech-101 datasets, where our diffusion-based augmentations significantly improved downstream classification accuracy and model generalization. No-tably, the inpainting technique excels in handling class imbalances by balancing the diversity and structural integrity of original data, while rich-text prompts and multi-object generation offer substantial gains by enhancing diversity and realism. Additionally, our methods show enhanced generalization to unseen data, proving their robustness and applicability to various deep learning tasks.

Original languageEnglish
Title of host publicationICTC 2024 - 15th International Conference on ICT Convergence
Subtitle of host publicationAI-Empowered Digital Innovation
PublisherIEEE Computer Society
Pages2027-2032
Number of pages6
ISBN (Electronic)9798350364637
DOIs
StatePublished - 2024
Event15th International Conference on Information and Communication Technology Convergence, ICTC 2024 - Jeju Island, Korea, Republic of
Duration: 16 Oct 202418 Oct 2024

Publication series

NameInternational Conference on ICT Convergence
ISSN (Print)2162-1233
ISSN (Electronic)2162-1241

Conference

Conference15th International Conference on Information and Communication Technology Convergence, ICTC 2024
Country/TerritoryKorea, Republic of
CityJeju Island
Period16/10/2418/10/24

Fingerprint

Dive into the research topics of 'Data Augmentation Techniques Using Text-to-Image Diffusion Models for Enhanced Data Diversity'. Together they form a unique fingerprint.

Cite this