Deep convolutional neural network based on adaptive gradient optimizer for fault detection in SCIM

Prashant Kumar, Ananda Shankar Hati

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

Early fault detection in squirrel cage induction motor (SCIM) can minimize the downtime and maximize production. This paper presents an adaptive gradient optimizer based deep convolutional neural network (ADG-dCNN) technique for bearing and rotor faults detection in squirrel cage induction motor. Multiple MEMS accelerometers have been used for vibration data collection, and sensor data fusion is employed in the model training and testing. ADG-dCNN allows the automatic feature extraction from the vibration data and minimizes the need for human expertise and reduces human intervention. It eliminates the error caused by manual feature extraction and selection, which is dependent on prior knowledge of fault types. This paper presents an end-to-end learning fault detection system based on deep CNN. The dataset for training and testing of the proposed method is generated from the test set-up. The proposed classifier attained an average accuracy of 99.70%. This paper also presents the recently developed SHapley Additive exPlanations (SHAP) methodology for evaluation of fault classification from the proposed model. The proposed technique can also be extended to other machinery with multiple sensors owing to its end-to-end learning abilities.

Original languageEnglish
Pages (from-to)350-359
Number of pages10
JournalISA Transactions
Volume111
DOIs
StatePublished - May 2021

Keywords

  • Adaptive gradient optimizer
  • Bearing fault
  • Broken rotor bar
  • Convolutional neural network (CNN)
  • Squirrel cage induction motor (SCIM)

Fingerprint

Dive into the research topics of 'Deep convolutional neural network based on adaptive gradient optimizer for fault detection in SCIM'. Together they form a unique fingerprint.

Cite this