TY - JOUR
T1 - Deep-learning-based enhanced optic-disc photography
AU - Ha, Ahnul
AU - Sun, Sukkyu
AU - Kim, Young Kook
AU - Lee, Jinho
AU - Jeoung, Jin Wook
AU - Kim, Hee Chan
AU - Park, Ki Ho
N1 - Publisher Copyright:
© 2020 Ha et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/10
Y1 - 2020/10
N2 - Optic-disc photography (ODP) has proven to be very useful for optic nerve evaluation in glaucoma. In real clinical practice, however, limited patient cooperation, small pupils, or media opacities can limit the performance of ODP. The purpose of this study was to propose a deep-learning approach for increased resolution and improved legibility of ODP by contrast, color, and brightness compensation. Each high-resolution original ODP was transformed into two counterparts: (1) down-scaled ‘low-resolution ODPs’, and (2) ‘compensated high-resolution ODPs’ produced via enhancement of the visibility of the optic disc margin and surrounding retinal vessels using a customized image post-processing algorithm. Then, the differences between these two counterparts were directly learned through a super-resolution generative adversarial network (SR-GAN). Finally, by inputting the high-resolution ODPs into SR-GAN, 4-times-up-scaled and overall-color-and-brightness-transformed ‘enhanced ODPs’ could be obtained. General ophthalmologists were instructed (1) to assess each ODP’s image quality, and (2) to note any abnormal findings, at 1-month intervals. The image quality score for the enhanced ODPs was significantly higher than that for the original ODP, and the overall optic disc hemorrhage (DH)-detection accuracy was significantly higher with the enhanced ODPs. We expect that this novel deep-learning approach will be applied to various types of ophthalmic images.
AB - Optic-disc photography (ODP) has proven to be very useful for optic nerve evaluation in glaucoma. In real clinical practice, however, limited patient cooperation, small pupils, or media opacities can limit the performance of ODP. The purpose of this study was to propose a deep-learning approach for increased resolution and improved legibility of ODP by contrast, color, and brightness compensation. Each high-resolution original ODP was transformed into two counterparts: (1) down-scaled ‘low-resolution ODPs’, and (2) ‘compensated high-resolution ODPs’ produced via enhancement of the visibility of the optic disc margin and surrounding retinal vessels using a customized image post-processing algorithm. Then, the differences between these two counterparts were directly learned through a super-resolution generative adversarial network (SR-GAN). Finally, by inputting the high-resolution ODPs into SR-GAN, 4-times-up-scaled and overall-color-and-brightness-transformed ‘enhanced ODPs’ could be obtained. General ophthalmologists were instructed (1) to assess each ODP’s image quality, and (2) to note any abnormal findings, at 1-month intervals. The image quality score for the enhanced ODPs was significantly higher than that for the original ODP, and the overall optic disc hemorrhage (DH)-detection accuracy was significantly higher with the enhanced ODPs. We expect that this novel deep-learning approach will be applied to various types of ophthalmic images.
UR - http://www.scopus.com/inward/record.url?scp=85092258377&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0239913
DO - 10.1371/journal.pone.0239913
M3 - Article
C2 - 33002080
AN - SCOPUS:85092258377
SN - 1932-6203
VL - 15
JO - PLoS ONE
JF - PLoS ONE
IS - 10 October
M1 - e0239913
ER -