TY - JOUR
T1 - Deep Unfolding Tensor Rank Minimization With Generalized Detail Injection for Pansharpening
AU - Thanh Nhat Mai, Truong
AU - Lam, Edmund Y.
AU - Lee, Chul
N1 - Publisher Copyright:
© 1980-2012 IEEE.
PY - 2024
Y1 - 2024
N2 - Pansharpening aims to generate a high-resolution multispectral (HRMS) image by merging a low-resolution multispectral (LRMS) image with a high-resolution panchromatic (PAN) image. While traditional model-based pansharpening algorithms have strong theoretical foundations, their performance, and generalizability are limited by handcrafted formulations. In contrast, recent deep learning (DL) approaches outperform model-based algorithms but do not effectively consider the physical properties of multispectral (MS) images, such as their spatial and spectral dependencies. These physical properties facilitate the exploitation of the actual imaging process, leading to enhanced spatial and spectral fidelities. In this work, we propose a deep unfolded tensor rank minimization framework with generalized detail injection for pansharpening to overcome the weaknesses of both model- and learning-based approaches while leveraging their advantages. Specifically, we first formulate the pansharpening task as a tensor rank minimization problem to exploit the low-rankness of MS images, providing a robust theoretical foundation on the physical properties of MS data. We also develop a generalized detail injection component, which effectively exploits the information in the PAN images, and incorporates it into the optimization to improve generalizability and representation capability. Then, we define a data-driven regularizer to compensate for modeling inaccuracies in the low-rank model and solve the optimization problem using an iterative technique. Finally, the iterative algorithm is unfolded into a multistage deep network, in which the optimization variables are solved by closed-form solutions and a data-driven regularizer in each stage. Experimental results on various MS image datasets demonstrate that the proposed algorithm achieves better pansharpening performance and interpretability than state-of-the-art algorithms.
AB - Pansharpening aims to generate a high-resolution multispectral (HRMS) image by merging a low-resolution multispectral (LRMS) image with a high-resolution panchromatic (PAN) image. While traditional model-based pansharpening algorithms have strong theoretical foundations, their performance, and generalizability are limited by handcrafted formulations. In contrast, recent deep learning (DL) approaches outperform model-based algorithms but do not effectively consider the physical properties of multispectral (MS) images, such as their spatial and spectral dependencies. These physical properties facilitate the exploitation of the actual imaging process, leading to enhanced spatial and spectral fidelities. In this work, we propose a deep unfolded tensor rank minimization framework with generalized detail injection for pansharpening to overcome the weaknesses of both model- and learning-based approaches while leveraging their advantages. Specifically, we first formulate the pansharpening task as a tensor rank minimization problem to exploit the low-rankness of MS images, providing a robust theoretical foundation on the physical properties of MS data. We also develop a generalized detail injection component, which effectively exploits the information in the PAN images, and incorporates it into the optimization to improve generalizability and representation capability. Then, we define a data-driven regularizer to compensate for modeling inaccuracies in the low-rank model and solve the optimization problem using an iterative technique. Finally, the iterative algorithm is unfolded into a multistage deep network, in which the optimization variables are solved by closed-form solutions and a data-driven regularizer in each stage. Experimental results on various MS image datasets demonstrate that the proposed algorithm achieves better pansharpening performance and interpretability than state-of-the-art algorithms.
KW - Deep unfolding
KW - model-based deep learning (DL)
KW - pansharpening
KW - tensor rank minimization
UR - http://www.scopus.com/inward/record.url?scp=85191352048&partnerID=8YFLogxK
U2 - 10.1109/TGRS.2024.3392215
DO - 10.1109/TGRS.2024.3392215
M3 - Article
AN - SCOPUS:85191352048
SN - 0196-2892
VL - 62
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
M1 - 5405218
ER -