TY - JOUR
T1 - Design of a Gait Phase Recognition System That Can Cope With EMG Electrode Location Variation
AU - Lee, Sang Wan
AU - Yi, Taeyoub
AU - Jung, Jin Woo
AU - Bien, Zeungnam
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2017/7
Y1 - 2017/7
N2 - Electromyogram (EMG) signal-based gait phase recognition for walking-assist devices warrants much attention in human-centered system design as it well exemplifies human-in-the-loop control where the system's prediction directly affects subsequent walking motion. Since walking motion poses considerable variations in electrode placement, performance reliability of such systems is contingent on a combination of electrode montage and a feature extraction method that takes into account underlying physiological factors of peripheral muscles where electrodes are placed. In many practical applications, however, proper consideration of effects of the electrode location variation on performance reliability of the system has received scant empirical attention. Here, based on a user-centered design principle, we establish a gait phase recognition system that is capable of rigidly controlling ill effects due to this covariate by carrying out a large-scale analysis that combines statistical, model-based, and empirical approaches. In doing so, we have developed a special sensing suit for the control of electrode placement and a reliable data acquisition. We then have conducted a nonparametric statistical analysis on class separability values of thirty types of EMG feature sets, followed by a model-based analysis to address the tradeoff between class separability and dimensionality. To further address the issue of how these results generalize to independent systems and data sets, we have carried out an empirical performance assessment over six classification methods. First, the two feature types, Integral of Absolute Value and Histogram, and a combination of the two are shown to be robust against electrode location variations while providing a firm performance guarantee. Second, system organization scenarios are presented on a case-by-case basis, allowing us to trade off system complexity for on-line adaptation capability. Collectively, our integrated analysis lends itself to formulating a guideline for design of highly reliable EMG signal-based walking assistant systems in a variety of smart home scenarios.
AB - Electromyogram (EMG) signal-based gait phase recognition for walking-assist devices warrants much attention in human-centered system design as it well exemplifies human-in-the-loop control where the system's prediction directly affects subsequent walking motion. Since walking motion poses considerable variations in electrode placement, performance reliability of such systems is contingent on a combination of electrode montage and a feature extraction method that takes into account underlying physiological factors of peripheral muscles where electrodes are placed. In many practical applications, however, proper consideration of effects of the electrode location variation on performance reliability of the system has received scant empirical attention. Here, based on a user-centered design principle, we establish a gait phase recognition system that is capable of rigidly controlling ill effects due to this covariate by carrying out a large-scale analysis that combines statistical, model-based, and empirical approaches. In doing so, we have developed a special sensing suit for the control of electrode placement and a reliable data acquisition. We then have conducted a nonparametric statistical analysis on class separability values of thirty types of EMG feature sets, followed by a model-based analysis to address the tradeoff between class separability and dimensionality. To further address the issue of how these results generalize to independent systems and data sets, we have carried out an empirical performance assessment over six classification methods. First, the two feature types, Integral of Absolute Value and Histogram, and a combination of the two are shown to be robust against electrode location variations while providing a firm performance guarantee. Second, system organization scenarios are presented on a case-by-case basis, allowing us to trade off system complexity for on-line adaptation capability. Collectively, our integrated analysis lends itself to formulating a guideline for design of highly reliable EMG signal-based walking assistant systems in a variety of smart home scenarios.
KW - Classifiers
KW - electromyogram (EMG) electrode location variation
KW - feature extraction
KW - feature selection
KW - gait phase recognition
KW - human-centered system design
KW - smart homes
KW - walking assist system
UR - http://www.scopus.com/inward/record.url?scp=85027679473&partnerID=8YFLogxK
U2 - 10.1109/TASE.2015.2477283
DO - 10.1109/TASE.2015.2477283
M3 - Article
AN - SCOPUS:85027679473
SN - 1545-5955
VL - 14
SP - 1429
EP - 1439
JO - IEEE Transactions on Automation Science and Engineering
JF - IEEE Transactions on Automation Science and Engineering
IS - 3
ER -