@inproceedings{8da6533bbd0e4f94a297d2674c3b2614,
title = "Development of unit cell model for prediction of large deformation in SMA-textile base actuator",
abstract = "Shape memory alloys (SMA)-textile-based actuators have gained significant attention for their applications in various fields, including soft robotics and wearable devices. Nowadays, soft actuators are created using SMA and macro fiber composites (MFC). SMA is a highly nonlinear material, and textile fiber-wrapped SMA wires are employed to craft shape-morphing structures and actuation sheets through the knitting method. This process requires expertise and time, leading to high costs for producing an actuation sheet. In this research work, ABAQUS is utilized to construct an equivalent unit cell model based on linear constitutive equations for analyzing the behavior of knitted SMA-textile-based actuators. The actuation deformation of the P-loop is obtained using the user material subroutine (UMAT). Strain is the primary output focused on in this study, with elastic material properties and electric field as the input parameters. By incorporating the linear constitutive equations, the actuation of basic patterns and derived patterns is successfully compared with experimental results. The proposed model predicts a similar deformation of the actuation pattern sheets of the SMA-textile-based actuator, justifying the proposed equivalent unit cell model.",
keywords = "Constitutive model, SMA-Textile actuator, dielectric elastomers, equivalent unit cell model, large deformation, large deformation, mechanical behavior, soft actuator design, soft robotics",
author = "Elahi, {Muhammad Umar} and Salman Khalid and Jinwoo Song and Kim, {Heung Soo}",
note = "Publisher Copyright: {\textcopyright} 2024 SPIE.; Soft Mechatronics and Wearable Systems 2024 ; Conference date: 25-03-2024 Through 28-03-2024",
year = "2024",
doi = "10.1117/12.3009882",
language = "English",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
editor = "Ilkwon Oh and Sang-Woo Kim and Maurizio Porfiri and Woon-Hong Yeo",
booktitle = "Soft Mechatronics and Wearable Systems",
address = "United States",
}