TY - JOUR
T1 - Direct integration of halide perovskite into ionic-gated transistors by multicomponent engineering with conjugated polymer
AU - Nketia-Yawson, Benjamin
AU - Nketia-Yawson, Vivian
AU - Ahn, Hyungju
AU - Jo, Jea woong
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2025/3/30
Y1 - 2025/3/30
N2 - The large capacitance and high induced-carrier density modulation of ionic gate dielectrics have resulted in their substantial integration into diverse electronic device applications with different classes of semiconductors. However, despite the versatile control of induced carrier density in metal halide perovskite semiconductors, limited chemical stability has restricted their consideration for solution-processed ionic-gated transistors (IGTs). In this work, we demonstrate the engineering of solvents, solution-processed ionic polymer dielectric, and perovskite-conjugated polymer semiconductor blends for high-performance and low-voltage orthogonally engineered IGTs. By selecting a suitable orthogonal solvent for the solution-processed ionic polymer dielectric, robust interfacial characteristics were achieved atop the blend-engineered perovskite–polymer semiconductor layer without damage. The fabricated IGTs with an optimized formamidinium lead triiodide (FAPbI3)-poly(3-hexylthiophene-2,5-diyl) (P3HT) blend showed a high room-temperature hole mobility of >9 cm2 V−1 s−1 under ≤− 1.5 V operation with an on/off ratio of >103, high reproducibility, and excellent operational stability under ambient conditions. This novel hybrid perovskite IGTs with unique ionic gate dielectric could be a testbed for developing flexible and deformable perovskite-based transistors, physiological sensing devices, and related electronics.
AB - The large capacitance and high induced-carrier density modulation of ionic gate dielectrics have resulted in their substantial integration into diverse electronic device applications with different classes of semiconductors. However, despite the versatile control of induced carrier density in metal halide perovskite semiconductors, limited chemical stability has restricted their consideration for solution-processed ionic-gated transistors (IGTs). In this work, we demonstrate the engineering of solvents, solution-processed ionic polymer dielectric, and perovskite-conjugated polymer semiconductor blends for high-performance and low-voltage orthogonally engineered IGTs. By selecting a suitable orthogonal solvent for the solution-processed ionic polymer dielectric, robust interfacial characteristics were achieved atop the blend-engineered perovskite–polymer semiconductor layer without damage. The fabricated IGTs with an optimized formamidinium lead triiodide (FAPbI3)-poly(3-hexylthiophene-2,5-diyl) (P3HT) blend showed a high room-temperature hole mobility of >9 cm2 V−1 s−1 under ≤− 1.5 V operation with an on/off ratio of >103, high reproducibility, and excellent operational stability under ambient conditions. This novel hybrid perovskite IGTs with unique ionic gate dielectric could be a testbed for developing flexible and deformable perovskite-based transistors, physiological sensing devices, and related electronics.
KW - Conjugated polymer
KW - Ionic dielectrics
KW - Lead iodide perovskite
KW - Orthogonal engineering
KW - Perovskite transistors
UR - http://www.scopus.com/inward/record.url?scp=85212226281&partnerID=8YFLogxK
U2 - 10.1016/j.apsusc.2024.162099
DO - 10.1016/j.apsusc.2024.162099
M3 - Article
AN - SCOPUS:85212226281
SN - 0169-4332
VL - 686
JO - Applied Surface Science
JF - Applied Surface Science
M1 - 162099
ER -