TY - JOUR
T1 - Dual concentric-sectored HIFU transducer with phase-shifted ultrasound excitation for expanded necrotic region
T2 - A simulation study
AU - Jeong, Jong Seob
PY - 2013
Y1 - 2013
N2 - In high-intensity focused ultrasound (HIFU) surgery, it is desirable to produce a large necrotic area per sonication for reduced treatment time. It has been well known that the conventional split-focus scheme capable of generating multiple foci can increase a necrotic region in the lateral or elevational direction. To treat a deep-seated target, it is necessary to generate an expanded necrotic region in the axial direction. In this paper, a novel sonication scheme capable of producing an expanded coagulated region in the both lateral and axial directions is presented. The proposed method can generate multi-focal spots in the lateral and axial directions by using a dual concentric-sectored (DCS) HIFU transducer based on phase-shifted ultrasound excitation. A sound field simulation was employed for this investigation. Four electrical signals with identical center frequencies and different phases activated the DCS transducer, composed of a disc and an annular element with a confocal point. Four 4-MHz ultrasound signals with different phases were transmitted to the target simultaneously, resulting in generation of dual-focal spots in the lateral and axial directions. The sound field simulation results showed that the ¿6-dB lateral and axial beamwidths of the DCS transducer were maximally 79% and 91% broader than the single-element transducer. Subsequently, bio-heat transfer and thermal dose simulation results were matched to the sound field simulation. Hence, the DCS HIFU transducer combined with phase-shifted excitation may be a promising approach to treat a deep-seated target and to reduce treatment time for HIFU surgery.
AB - In high-intensity focused ultrasound (HIFU) surgery, it is desirable to produce a large necrotic area per sonication for reduced treatment time. It has been well known that the conventional split-focus scheme capable of generating multiple foci can increase a necrotic region in the lateral or elevational direction. To treat a deep-seated target, it is necessary to generate an expanded necrotic region in the axial direction. In this paper, a novel sonication scheme capable of producing an expanded coagulated region in the both lateral and axial directions is presented. The proposed method can generate multi-focal spots in the lateral and axial directions by using a dual concentric-sectored (DCS) HIFU transducer based on phase-shifted ultrasound excitation. A sound field simulation was employed for this investigation. Four electrical signals with identical center frequencies and different phases activated the DCS transducer, composed of a disc and an annular element with a confocal point. Four 4-MHz ultrasound signals with different phases were transmitted to the target simultaneously, resulting in generation of dual-focal spots in the lateral and axial directions. The sound field simulation results showed that the ¿6-dB lateral and axial beamwidths of the DCS transducer were maximally 79% and 91% broader than the single-element transducer. Subsequently, bio-heat transfer and thermal dose simulation results were matched to the sound field simulation. Hence, the DCS HIFU transducer combined with phase-shifted excitation may be a promising approach to treat a deep-seated target and to reduce treatment time for HIFU surgery.
UR - http://www.scopus.com/inward/record.url?scp=84877730470&partnerID=8YFLogxK
U2 - 10.1109/TUFFC.2013.2649
DO - 10.1109/TUFFC.2013.2649
M3 - Article
C2 - 23661126
AN - SCOPUS:84877730470
SN - 0885-3010
VL - 60
SP - 924
EP - 931
JO - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
JF - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
IS - 5
M1 - 6512829
ER -