TY - JOUR
T1 - Eco-friendly synthesis of rod-like hydroxyapatite on spherical carbon
T2 - A dual-function composite for selective cobalt removal and enhanced oxygen evolution reaction
AU - Mohammadi, Ali
AU - Tamang, Sujina
AU - Rethinasabapathy, Muruganantham
AU - Ranjith, Kugalur Shanmugam
AU - Safarkhani, Moein
AU - Kwak, Cheol Hwan
AU - Roh, Changhyun
AU - Huh, Yun Suk
AU - Han, Young Kyu
N1 - Publisher Copyright:
© 2025 Elsevier B.V.
PY - 2025/4/5
Y1 - 2025/4/5
N2 - The presence of cobalt ions (Co2 +) and radionuclides (60Co) in industrial and radioactive effluents pose serious threats to environmental ecosystems and human health. This paper presents the synthesis of dual-functional hydroxyapatite (HAp)-incorporated spherical carbon (SC) composite (HAp/SC) towards the selective adsorption of cobalt from wastewater and the utilization of the Co2+-adsorbed HAp/SC composite (Co2+- HAp/SC) as an electrocatalyst for the oxygen evolution reaction (OER). Herein, we prepared a series of HAp/SC composites by varying HAp weight percentages of 10 %, 20 %, 30 %, 40 %, and 50 %. Among the prepared composites, 20 wt% HAp/SC exhibited the highest Co2+ adsorption capacity of 111.03 mg g⁻1 which was higher than those of individual HAp and SC. The excellent Co2+ adsorption performance of 20 wt% HAp/SC composite might be due to the synergistic effects of phosphate groups in HAp, which selectively capture Co2+, along with large number of surface -OH and -COOH functional groups of SC through electrostatic, ion-exchange, and surface complexation mechanisms. Batch adsorption experimental data fit well with the Langmuir model (R2 = 0.97) suggesting monolayer adsorption of Co2+ onto the adsorption sites of HAp/SC. Also, the 20 wt% HAp/SC composite exhibited rapid Co2+ adsorption kinetics and effectively describing the pseudo-first-order model (R2 = 0.97) with a rate constant (k1) of 0.14893 min−1. Additionally, the Co2+-HAp/SC composite demonstrates potential as an electrocatalyst for the oxygen evolution reaction (OER), exhibiting an overpotential of 380 mV and a Tafel slope of 39.3 mV dec−1. This dual functionality suggests the HAp/SC composite for the cobalt removal, with the resulting product serving as an electrocatalyst for OER.
AB - The presence of cobalt ions (Co2 +) and radionuclides (60Co) in industrial and radioactive effluents pose serious threats to environmental ecosystems and human health. This paper presents the synthesis of dual-functional hydroxyapatite (HAp)-incorporated spherical carbon (SC) composite (HAp/SC) towards the selective adsorption of cobalt from wastewater and the utilization of the Co2+-adsorbed HAp/SC composite (Co2+- HAp/SC) as an electrocatalyst for the oxygen evolution reaction (OER). Herein, we prepared a series of HAp/SC composites by varying HAp weight percentages of 10 %, 20 %, 30 %, 40 %, and 50 %. Among the prepared composites, 20 wt% HAp/SC exhibited the highest Co2+ adsorption capacity of 111.03 mg g⁻1 which was higher than those of individual HAp and SC. The excellent Co2+ adsorption performance of 20 wt% HAp/SC composite might be due to the synergistic effects of phosphate groups in HAp, which selectively capture Co2+, along with large number of surface -OH and -COOH functional groups of SC through electrostatic, ion-exchange, and surface complexation mechanisms. Batch adsorption experimental data fit well with the Langmuir model (R2 = 0.97) suggesting monolayer adsorption of Co2+ onto the adsorption sites of HAp/SC. Also, the 20 wt% HAp/SC composite exhibited rapid Co2+ adsorption kinetics and effectively describing the pseudo-first-order model (R2 = 0.97) with a rate constant (k1) of 0.14893 min−1. Additionally, the Co2+-HAp/SC composite demonstrates potential as an electrocatalyst for the oxygen evolution reaction (OER), exhibiting an overpotential of 380 mV and a Tafel slope of 39.3 mV dec−1. This dual functionality suggests the HAp/SC composite for the cobalt removal, with the resulting product serving as an electrocatalyst for OER.
KW - Adsorption
KW - Heavy metals
KW - Hydroxyapatite
KW - Oxygen evolution reaction
KW - Spherical carbon
UR - http://www.scopus.com/inward/record.url?scp=85214687549&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2025.137164
DO - 10.1016/j.jhazmat.2025.137164
M3 - Article
AN - SCOPUS:85214687549
SN - 0304-3894
VL - 487
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 137164
ER -