Effects of Fluorine Doping on the Electrical Performance of ZnON Thin-Film Transistors

Hyoung Do Kim, Jong Heon Kim, Kyung Park, Jung Hyun Kim, Jozeph Park, Yong Joo Kim, Hyun Suk Kim

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

In this work, the effects of fluorine incorporation in high mobility zinc oxynitride (ZnON) semiconductor are studied by both theoretical calculations and experimental evaluation of thin film transistors (TFTs). From density functional theory (DFT) calculations, fluorine acts as a carrier suppressor in the ZnON matrix when it substitutes a nitrogen vacant site (VN). Thin films of ZnON and ZnON:F were grown by reactively cosputtering Zn metal and ZnF2 targets, and their electrical, physical, and chemical characteristics were studied. X-ray photoelectron spectroscopy (XPS) analyses of the nitrogen 1s peaks in ZnON and ZnON:F suggest that as the fluorine incorporation increases, the relative fraction of Zn-N bonds from stoichiometric Zn3N2 increases. On the other hand, the Zn-N bond characteristics arising from nonstoichiometric ZnxNy and N-N bonds decrease, implying that indeed fluorine anions have an effect of passivating the N-related defects. The corresponding TFTs exhibit optimum transfer characteristics and switching ability when approximately 3.5 atomic percent of fluorine is present in the 40 nm thick ZnON:F active layer.

Original languageEnglish
Pages (from-to)24688-24695
Number of pages8
JournalACS Applied Materials and Interfaces
Volume9
Issue number29
DOIs
StatePublished - 26 Jul 2017

Keywords

  • density functional theory (DFT)
  • first-principles calculations
  • fluorine doped zinc oxynitride (ZnON:F)
  • fluorine doping
  • negative bias illumination stress (NBIS)
  • reactive RF cosputtering
  • thin film transistors (TFTs)
  • zinc oxynitride (ZnON)

Fingerprint

Dive into the research topics of 'Effects of Fluorine Doping on the Electrical Performance of ZnON Thin-Film Transistors'. Together they form a unique fingerprint.

Cite this