TY - JOUR
T1 - Efficacy and safety of oblique posterior endplate resection for wider decompression (trumpet-shaped decompression) during anterior cervical discectomy and fusion
AU - Lee, Dong Ho
AU - Lee, Suk Kyu
AU - Cho, Jae Hwan
AU - Hwang, Chang Ju
AU - Lee, Choon Sung
AU - Yang, Jae Jun
AU - Kim, Kook Jong
AU - Park, Jae Hong
AU - Park, Sehan
N1 - Publisher Copyright:
©AANS 2023, except where prohibited by US copyright law.
PY - 2023/2
Y1 - 2023/2
N2 - OBJECTIVE Anterior cervical discectomy and fusion (ACDF) provides a limited workspace, and surgeons often need to access the posterior aspect of the vertebral body to achieve sufficient decompression. Oblique resection of the posterior endplate (trumpet-shaped decompression [TSD]) widens the workspace, enabling removal of lesions behind the vertebral body. This study was conducted to evaluate the efficacy and safety of oblique posterior endplate resection for wider decompression. METHODS In this retrospective study, 227 patients who underwent ACDF for the treatment of cervical myelopathy or radiculopathy caused by spondylosis or ossification of the posterior longitudinal ligament and were followed up for ≥ 1 year were included. Patient characteristics, fusion rates, subsidence, and patient-reported outcome measures, including the neck pain visual analog scale (VAS) score, arm pain VAS score, and Neck Disability Index (NDI), were assessed. Patients who underwent TSD during ACDF (TSD group) and those who underwent surgery without TSD (non-TSD group) were compared. RESULTS Fifty-seven patients (25.1%) were included in the TSD group and 170 patients (74.9%) in the non-TSD group. In the TSD group, 28.2% ± 5.5% of the endplate was resected, and 26.0% ± 6.1% of the region behind the vertebral body could be visualized via the TSD technique. The resection angle was 26.9° ± 5.9°. The fusion rate assessed on the basis of interspinous motion, intragraft bone bridging, and extragraft bone bridging did not significantly differ between the two groups. Furthermore, there were no significant intergroup differences in subsidence. The patient-reported outcome measures at the 1-year follow-up were also not significantly different between the groups. CONCLUSIONS TSD widened the workspace during ACDF, and 26% of the region posterior to the vertebral body could be accessed using this technique. The construct stability was not adversely affected by TSD as demonstrated by the similar fusion and subsidence rates among patients who underwent TSD and those who did not. Therefore, TSD can be safely applied during ACDF when compressive lesions extend behind the vertebral body and are not limited to the disc space, enabling adequate decompression without disrupting the construct stability.
AB - OBJECTIVE Anterior cervical discectomy and fusion (ACDF) provides a limited workspace, and surgeons often need to access the posterior aspect of the vertebral body to achieve sufficient decompression. Oblique resection of the posterior endplate (trumpet-shaped decompression [TSD]) widens the workspace, enabling removal of lesions behind the vertebral body. This study was conducted to evaluate the efficacy and safety of oblique posterior endplate resection for wider decompression. METHODS In this retrospective study, 227 patients who underwent ACDF for the treatment of cervical myelopathy or radiculopathy caused by spondylosis or ossification of the posterior longitudinal ligament and were followed up for ≥ 1 year were included. Patient characteristics, fusion rates, subsidence, and patient-reported outcome measures, including the neck pain visual analog scale (VAS) score, arm pain VAS score, and Neck Disability Index (NDI), were assessed. Patients who underwent TSD during ACDF (TSD group) and those who underwent surgery without TSD (non-TSD group) were compared. RESULTS Fifty-seven patients (25.1%) were included in the TSD group and 170 patients (74.9%) in the non-TSD group. In the TSD group, 28.2% ± 5.5% of the endplate was resected, and 26.0% ± 6.1% of the region behind the vertebral body could be visualized via the TSD technique. The resection angle was 26.9° ± 5.9°. The fusion rate assessed on the basis of interspinous motion, intragraft bone bridging, and extragraft bone bridging did not significantly differ between the two groups. Furthermore, there were no significant intergroup differences in subsidence. The patient-reported outcome measures at the 1-year follow-up were also not significantly different between the groups. CONCLUSIONS TSD widened the workspace during ACDF, and 26% of the region posterior to the vertebral body could be accessed using this technique. The construct stability was not adversely affected by TSD as demonstrated by the similar fusion and subsidence rates among patients who underwent TSD and those who did not. Therefore, TSD can be safely applied during ACDF when compressive lesions extend behind the vertebral body and are not limited to the disc space, enabling adequate decompression without disrupting the construct stability.
KW - anterior cervical corpectomy
KW - anterior cervical discectomy and fusion
KW - endplate resection
KW - fusion
KW - subsidence
KW - trumpet-shaped decompression
KW - workspace
UR - http://www.scopus.com/inward/record.url?scp=85147309627&partnerID=8YFLogxK
U2 - 10.3171/2022.7.SPINE22614
DO - 10.3171/2022.7.SPINE22614
M3 - Article
C2 - 36152331
AN - SCOPUS:85147309627
SN - 1547-5654
VL - 38
SP - 157
EP - 164
JO - Journal of Neurosurgery: Spine
JF - Journal of Neurosurgery: Spine
IS - 2
ER -