Abstract
Increasing demand for recombinant therapeutic proteins has warranted the need for an efficient host cell to produce high-quality proteins, with a high yield. Chinese hamster ovary (CHO) cells appear to meet this demand, and their genetic tailoring will facilitate improvements in their productivity for recombinant proteins. Recent advances in programmable RNA-guided Cas9 nuclease (RGN) have facilitated CHO cell engineering via site-specific genome editing. One critical determinant for increasing genomeediting efficiency is attaining a balanced expression level of Cas9 nuclease and guide RNAs in the nucleus. Here, we achieved high-level expression of Cas9 nuclease and single guide RNA (sgRNA), enhancing expression levels approximately three-fold over the conventional methodology by using an iterative transfection approach. We demonstrated that high abundance of sgRNA and Cas9 nuclease induced a two-fold increase in the site-specific mutation rate on average for both single and multiple genetic targets. Sequencing results confirmed frame-shift mutations at targeted genomic loci created by error-prone NHEJassociated mutations. Moreover, we controlled the amount of sgRNA-Cas9 complex formation in vitro and delivered the complex directly to cells, resulting in the maximization of mutation frequency by the high-level of sgRNA-Cas9 complex. Importantly, mutation rates of putative off-target sites remained minimal in spite of the improved genome-editing efficiency. These results provide an efficient strategy for editing the CHO genome with the reduction of the time-consuming screening efforts aimed at isolating clones with desirable properties.
Original language | English |
---|---|
Pages (from-to) | 825-833 |
Number of pages | 9 |
Journal | Biotechnology and Bioprocess Engineering |
Volume | 20 |
Issue number | 5 |
DOIs | |
State | Published - 1 Sep 2015 |
Keywords
- Chinese hamster ovary (CHO) cells
- CRISPR/Cas9
- genome editing
- iterative transfection