Electrochemical detection of high-sensitivity CRP inside a microfluidic device by numerical and experimental studies

Gyudo Lee, Insu Park, Kiwoon Kwon, Taeyun Kwon, Jongbum Seo, Woo Jin Chang, Hakhyun Nam, Geun Sig Cha, Moon Hee Choi, Dae Sung Yoon, Sang Woo Lee

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

The concentration of C-reactive protein (CRP), a classic acute phase plasma protein, increases rapidly in response to tissue infection or inflammation, especially in cases of cardiovascular disease and stroke. Thus, highly sensitive monitoring of the CRP concentration plays a pivotal role in detecting these diseases. Many researchers have studied methods for the detection of CRP concentrations such as optical, mechanical, and electrochemical techniques inside microfluidic devices.While significant progress has been made towards improving the resolution and sensitivity of detection, only a few studies have systematically analyzed the CRP concentration using both numerical and experimental approaches. Specifically, systematic analyses of the electrochemical detection of high-sensitivity CRP (hsCRP) using an enzyme-linked immunosorbant assay (ELISA) inside a microfluidic device have never been conducted. In this paper, we systematically analyzed the electrochemical detection of CRP modified through the attachment of an alkaline phosphatase (ALPlabeled CRP) using ELISA inside a chip. For this analysis, we developed a model based on antigen-antibody binding kinetics theory for the numerical quantification of the CRP concentration. We also experimentally measured the current value corresponding to the ALP-labeled CRP concentration inside the microfluidic chip. The measured value closely matched the calculated value obtained by numerical simulation using the developed model. Through this comparison, we validated the numerical simulation methods, and the calculated and measured values. Lastly, we examined the effects of various microfluidic parameters on electrochemical detection of the ALP-labeled CRP concentration using numerical simulations. The results of these simulations provide insight into the microfluidic electrochemical reactions used for protein detection. Furthermore, the results described in this study should be useful for the design and optimization of electrochemical immunoassay chips for the detection of target proteins.

Original languageEnglish
Pages (from-to)375-384
Number of pages10
JournalBiomedical Microdevices
Volume14
Issue number2
DOIs
StatePublished - Apr 2012

Keywords

  • C-reactive protein
  • Electrochemical detection
  • Finite element method
  • HsCRP
  • Microfluidics

Fingerprint

Dive into the research topics of 'Electrochemical detection of high-sensitivity CRP inside a microfluidic device by numerical and experimental studies'. Together they form a unique fingerprint.

Cite this