Enabling redox chemistry with hierarchically designed bilayered nanoarchitectures for pouch-type hybrid supercapacitors: A sunlight-driven rechargeable energy storage system to portable electronics

Goli Nagaraju, S. Chandra Sekhar, Bhimanaboina Ramulu, L. Krishna Bharat, G. Seeta Rama Raju, Young Kyu Han, Jae Su Yu

Research output: Contribution to journalArticlepeer-review

83 Scopus citations

Abstract

An essential key to enhance the redox chemistry of battery-type materials is to construct rational design of nanoarchitectures with high electrochemical activity. Herein, we reported a hierarchical composite consisting of bilayered nickel hydroxide carbonate nanoplates-decorated nanoflowers on nickel foam (NHC NPs@NFs/Ni foam) via a facile homogeneous precipitation method for use as an effective cathode in hybrid supercapacitors (HSCs). Under controlled growth time (4 h), the bilayered NHC NPs@NFs with hierarchical alignment were spontaneously crystallized on Ni foam. The as-preapared hybrid structure greatly enhanced the electroactive surface area and enabled the rapid redox chemistry in alkaline electrolyte. Notably, the hybrid NHC NPs@NFs/Ni foam delivered a maximum areal capacity of 727.4 μAh/cm2 at 2 mA/cm2 and it is relatively higher than its oxide form (76.6 μAh/cm2) in a three-electrode system. Also, a pouch-type HSC with bilayered NHC NPs@NFs/Ni foam and porous carbon electrodes was fabricated, which demonstrated superior energy storage performance in terms of capacitance (1445.8 mF/cm2), energy density (0.506 mWh/cm2), power density (35.675 mW/cm2) and cycling stability (89.4%). Furthermore, the self-charging power station consisting of a solar cell for energy conversion and the HSCs for energy storage was also assembled to operate the portable electronic displays and wall clock effectively for long time. This facile approach for the cost-effective fabrication of hierarchically designed nanomaterials paves a path for the development of high-performance hybrid supercapacitors.

Original languageEnglish
Pages (from-to)448-461
Number of pages14
JournalNano Energy
Volume50
DOIs
StatePublished - Aug 2018

Keywords

  • Areal capacity
  • Bilayered nanoarchitectures
  • Energy density
  • Hybrid supercapacitor
  • Redox chemistry
  • Self-charging station

Fingerprint

Dive into the research topics of 'Enabling redox chemistry with hierarchically designed bilayered nanoarchitectures for pouch-type hybrid supercapacitors: A sunlight-driven rechargeable energy storage system to portable electronics'. Together they form a unique fingerprint.

Cite this