Enhanced detection and recognition of road markings based on adaptive region of interest and deep learning

Toan Minh Hoang, Se Hyun Nam, Kang Ryoung Park

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

The accurate detection and classification of road markings is required for autonomous vehicles. There have been several previous studies on the detection of road lane markings, but the detection and classification of arrows and bike markings has not received much attention. There exists previous research on the detection and classification of arrows and bike markings, but they comprise a performance limitation owing to the use of the entire input image. Therefore, our approach is focused on enhancing the performance of the detection and classification of arrows and bike markings based on the adaptive region of interest (ROI) and deep convolutional neural network (CNN). In the first stage, a vanishing point is detected in order to create the ROI image. The ROI image that covers the majority of the road region is then used as the input to train the CNN-based detector and classifier in the second stage. The proposed approach is evaluated using three open datasets, namely, the Cambridge dataset, Daimler dataset, and Malaga urban dataset on a desktop computer and NVIDIA Jetson TX2 embedded system. The experimental results show that the proposed method outperforms the state-of-the-art methods in recognition performance even with small road markings at a large distance.

Original languageEnglish
Article number2933598
Pages (from-to)109817-109832
Number of pages16
JournalIEEE Access
Volume7
DOIs
StatePublished - 2019

Keywords

  • Arrows and bike markings
  • Deep CNN
  • Detection and recognition of road markings
  • NVIDIA Jetson TX2 embedded system
  • Vanishing point

Fingerprint

Dive into the research topics of 'Enhanced detection and recognition of road markings based on adaptive region of interest and deep learning'. Together they form a unique fingerprint.

Cite this