Abstract
Carbonaceous-based metal-free catalysts are promising aspirants for effective electrocatalytic hydrogen generation. Herein, we synthesized mesoporous-activated carbon nanosheets (ELC) from biomass eucalyptus leaves through KOH activation. The microstructure, structural, and textural characteristics of the prepared materials were characterized by FE-SEM, Raman, XRD, and BET measurements. The high temperature (700 °C) KOH-activated ELC nanosheets exhibited an interconnected nanosheet morphology with a large specific surface area (1436 m2/g) and high mesoporosity. The ELC-700 catalyst exhibited an excellent electrocatalytic HER performance with a low overpotential (39 mV at 10 mA/cm2), excellent durability, and a Trivial Tafel slope (36 mV/dec) in 0.5 M H2SO4 electrolyte. These findings indicate a new approach for developing excellent biomass-derived electrocatalysts for substantially efficient green hydrogen production.
Original language | English |
---|---|
Article number | 670 |
Journal | Materials |
Volume | 18 |
Issue number | 3 |
DOIs | |
State | Published - Feb 2025 |
Keywords
- activated carbon
- biomass
- electrocatalysts
- eucalyptus leaves
- hydrogen evaluation reaction