Abstract
Thin-film solar cells have attracted worldwide attention due to their high efficiency and low cost. Antimony selenide (Sb2Se3) is a promising light absorption material candidate for thin-film solar cells due to its suitable band gap, abundance, low toxicity, and high chemical stability. Herein, we fabricate an Sb2Se3 thin film solar cell using a simple hydrazine solution process. By controlling the thickness of the photoactive layer and inserting a poly(3-hexylthiophene) hole-transporting layer, an Sb2Se3 solar cell with a power conversion efficiency of 2.45% was achieved.
Original language | English |
---|---|
Pages (from-to) | 282-287 |
Number of pages | 6 |
Journal | Current Applied Physics |
Volume | 20 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2020 |
Keywords
- Antimony selenide
- Hole-transporting layer
- n-i-p structure
- poly(3-hexylthiophene)
- Solution process
- Thin film solar cell