Exploring oxygen-affinity-controlled TaN electrodes for thermally advanced TaOx bipolar resistive switching

Taeyoon Kim, Gwangho Baek, Seungmo Yang, Jung Yup Yang, Kap Soo Yoon, Soo Gil Kim, Jae Yeon Lee, Hyun Sik Im, Jin Pyo Hong

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Recent advances in oxide-based resistive switching devices have made these devices very promising candidates for future nonvolatile memory applications. However, several key issues remain that affect resistive switching. One is the need for generic alternative electrodes with thermally robust resistive switching characteristics in as-grown and higherature annealed states. Here, we studied the electrical characteristics of Ta2O5-x oxide-based bipolar resistive frames for various TaNx bottoms. Control of the nitrogen content of the TaNx electrode is a key factor that governs variations in its oxygen affinity and structural phase. We analyzed the composition and chemical bonding states of as-grown and annealed Ta2O5-x and TaNx layers and characterized the TaNx electrode-dependent switching behavior in terms of the electrode's oxygen affinity. Our experimental findings can aid the development of advanced resistive switching devices with thermal stability up to 400 °C.

Original languageEnglish
Article number8532
JournalScientific Reports
Volume8
Issue number1
DOIs
StatePublished - 1 Dec 2018

Fingerprint

Dive into the research topics of 'Exploring oxygen-affinity-controlled TaN electrodes for thermally advanced TaOx bipolar resistive switching'. Together they form a unique fingerprint.

Cite this