TY - JOUR
T1 - Fabrication of Ternary AgPdAu Alloy Nanoparticles on c-Plane Sapphire by the Systematical Control of Film Thickness and Deposition Sequence
AU - Kunwar, Sundar
AU - Pandey, Puran
AU - Sui, Mao
AU - Bastola, Sushil
AU - Lee, Jihoon
N1 - Publisher Copyright:
© 2018, The Minerals, Metals & Materials Society and ASM International.
PY - 2018/6/1
Y1 - 2018/6/1
N2 - In this work, a systematic study on the fabrication of ternary AgPdAu alloy nanoparticles (NPs) on c-plane sapphire (0001) is presented and the corresponding structural and optical characteristics are demonstrated. The metallic trilayers of various thicknesses and deposition orders are annealed in a controlled manner (400 °C to 900 °C) to induce the solid-state dewetting that yields the various structural configurations of AgPdAu alloy NPs. The dewetting of relatively thicker trilayers (15 nm) is gradually progressed with void nucleation, growth, and coalescence, isolated NP formation, and shape transformation, along with the temperature control. For 6 nm thickness, owing to the sufficient dewetting of trilayers along with enhanced diffusion, dense and small spherical alloy NPs are fabricated. Depending on the specific growth condition, the surface diffusion and interdiffusion of metal atoms, surface and interface energy minimization, Rayleigh instability, and equilibrium configuration are correlated to describe the fabrication of ternary alloy NPs. Ternary alloy NPs exhibit morphology-dependent ultraviolet–visible–near infrared (UV–VIS–NIR) reflectance properties such as the inverse relationship of average reflectance with the surface coverage, absorption enhancement in specific regions, and reflectance maxima in UV and NIR regions. In addition, Raman spectra depict the six active phonon modes of sapphires and their intensity and position modulation by the alloy NPs.
AB - In this work, a systematic study on the fabrication of ternary AgPdAu alloy nanoparticles (NPs) on c-plane sapphire (0001) is presented and the corresponding structural and optical characteristics are demonstrated. The metallic trilayers of various thicknesses and deposition orders are annealed in a controlled manner (400 °C to 900 °C) to induce the solid-state dewetting that yields the various structural configurations of AgPdAu alloy NPs. The dewetting of relatively thicker trilayers (15 nm) is gradually progressed with void nucleation, growth, and coalescence, isolated NP formation, and shape transformation, along with the temperature control. For 6 nm thickness, owing to the sufficient dewetting of trilayers along with enhanced diffusion, dense and small spherical alloy NPs are fabricated. Depending on the specific growth condition, the surface diffusion and interdiffusion of metal atoms, surface and interface energy minimization, Rayleigh instability, and equilibrium configuration are correlated to describe the fabrication of ternary alloy NPs. Ternary alloy NPs exhibit morphology-dependent ultraviolet–visible–near infrared (UV–VIS–NIR) reflectance properties such as the inverse relationship of average reflectance with the surface coverage, absorption enhancement in specific regions, and reflectance maxima in UV and NIR regions. In addition, Raman spectra depict the six active phonon modes of sapphires and their intensity and position modulation by the alloy NPs.
UR - http://www.scopus.com/inward/record.url?scp=85044174292&partnerID=8YFLogxK
U2 - 10.1007/s11661-018-4573-8
DO - 10.1007/s11661-018-4573-8
M3 - Article
AN - SCOPUS:85044174292
SN - 1073-5623
VL - 49
SP - 2352
EP - 2362
JO - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
JF - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
IS - 6
ER -