Abstract
Efficient separation of charges and their mobility are key challenges in metal-organic-framework (MOF) based devices. In the present study, thin films of cobalt-based metal organic frameworks (MOFs) are synthesized using a layer-by-layer technique, and their electrical/optoelectronic properties are studied. The as-prepared MOF films show electrically insulating behavior, which after hole doping demonstrate p-type conduction behaviour. The measured HOMO-LUMO energy states of the MOF films are found to be well matched for sensitizing TiO2, and the photoluminescence quenching experiment demonstrates a facile photoelectron transfer path from the doped frameworks to TiO2. Consequently, the doped MOFs are employed successfully as light harvesting and charge transporting active layers in a fully devised TiO2-based solar cell. Two different organic ligands viz., benzene dicarboxylic acid and naphthalenedicarboxylic acid are used to synthesize two kinds of Co-MOFs having different geometrical dimensions of unit cells and pores, and their influence on hole doping and charge transportation is studied. Under optimized conditions, the Co-MOF based device demonstrates a solar-to-electric energy conversion efficiency of 1.12% with a short circuit current of 2.56 mA cm-2, showing promising future prospects of the application of Co-MOFs in photovoltaic devices. Further, the photovoltaic performance of the Co-MOF based device is comparatively studied with that of the previously reported Cu-MOF and Ru-MOF based similar devices, and the influence of different metal centers of MOFs on their light harvesting performance is discussed.
Original language | English |
---|---|
Pages (from-to) | 22669-22676 |
Number of pages | 8 |
Journal | Journal of Materials Chemistry A |
Volume | 3 |
Issue number | 45 |
DOIs | |
State | Published - 2015 |