TY - JOUR
T1 - Ferroelectric properties of HfAlOx-based ferroelectric memristor devices for neuromorphic applications
T2 - Influence of top electrode deposition method
AU - Park, Woohyun
AU - Park, Yongjin
AU - Kim, Sungjun
N1 - Publisher Copyright:
© 2024 American Institute of Physics. All rights reserved.
PY - 2024/12/21
Y1 - 2024/12/21
N2 - In this study, we compare the performance of ferroelectric memristor devices based on the fabrication method for the top electrode, focusing on atomic layer deposition (ALD) and physical vapor deposition techniques. We investigate the effects of these methods on the formation of the orthorhombic phase (o-phase) in HfAlOx (HAO) ferroelectric films, which is crucial for ferroelectric properties. The devices were fabricated with HAO films doped with 3.4% aluminum, followed by rapid thermal annealing at 700 ̊C. Our results demonstrate that the atomic layer deposition process forms a TiOxNy capping layer at the interface between the HAO film and the TiN top electrode, which promotes the o-phase formation. This capping layer effect leads to enhanced polarization characteristics, as evidenced by higher remnant polarization and tunneling electroresistance (TER) in the ALD-fabricated devices. The ALD method also results in a better interfacial layer condition, confirmed by a lower interfacial non-ferroelectric capacitance (Ci). Characterization techniques, including transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray diffraction. These structural advantages contribute to enhanced electrical performance, demonstrating neuromorphic applications. Here, our study highlights the significant impact of the ALD deposition method on enhancing the ferroelectric properties and overall performance of ferroelectric memristor devices, making it a promising approach for advanced memory and neuromorphic computing applications.
AB - In this study, we compare the performance of ferroelectric memristor devices based on the fabrication method for the top electrode, focusing on atomic layer deposition (ALD) and physical vapor deposition techniques. We investigate the effects of these methods on the formation of the orthorhombic phase (o-phase) in HfAlOx (HAO) ferroelectric films, which is crucial for ferroelectric properties. The devices were fabricated with HAO films doped with 3.4% aluminum, followed by rapid thermal annealing at 700 ̊C. Our results demonstrate that the atomic layer deposition process forms a TiOxNy capping layer at the interface between the HAO film and the TiN top electrode, which promotes the o-phase formation. This capping layer effect leads to enhanced polarization characteristics, as evidenced by higher remnant polarization and tunneling electroresistance (TER) in the ALD-fabricated devices. The ALD method also results in a better interfacial layer condition, confirmed by a lower interfacial non-ferroelectric capacitance (Ci). Characterization techniques, including transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray diffraction. These structural advantages contribute to enhanced electrical performance, demonstrating neuromorphic applications. Here, our study highlights the significant impact of the ALD deposition method on enhancing the ferroelectric properties and overall performance of ferroelectric memristor devices, making it a promising approach for advanced memory and neuromorphic computing applications.
UR - http://www.scopus.com/inward/record.url?scp=85212784644&partnerID=8YFLogxK
U2 - 10.1063/5.0239966
DO - 10.1063/5.0239966
M3 - Article
C2 - 39679521
AN - SCOPUS:85212784644
SN - 0021-9606
VL - 161
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 23
M1 - 234706
ER -