TY - JOUR
T1 - First principles quantum analysis of structural, electronic, optical and thermoelectric properties of XCu2GeQ4 (X = Ba, Sr and Q = S, Se) for energy applications
AU - Abubakr, Muhammad
AU - Abbas, Zeesham
AU - Naz, Adeela
AU - Khalil, H. M.Waseem
AU - Khan, Muhammad Asghar
AU - Kim, Honggyun
AU - Khan, Karim
AU - Ouladsmane, Mohamed
AU - Rehman, Shania
AU - Kim, Deok kee
AU - Khan, Muhammad Farooq
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2023/10
Y1 - 2023/10
N2 - Cu-based chalcogenide materials have attracted a great deal of attention due to their promising optoelectronic properties. The density functional theory (DFT) framework is used in order to estimate the optical and electronic properties of XCu2GeQ4 (X = Ba, Sr and Q = S, Se). We report the optical and electronic properties of Cu-based chalcogenides in this study, which have narrow and direct bandgap materials. The calculated energy bandgap of quaternary chalcogenide materials decreases in the following sequence: SrCu2GeS4 (0.697 eV), BaCu2GeS4 (0.667 eV), BaCu2GeSe4 (0.378 eV), and SrCu2GeSe4 (0.195 eV). This reduction in energy bandgaps shows significant effect of changing dopants on electronic and consequently optical properties of XCu2GeQ4 (X = Ba, Sr and Q = S, Se). The optical characteristics of these materials are investigated in order to explore their potential for optoelectronic applications. However, other materials are emerging as contenders for solar cells, which operate from UV to infrared regions. Initially in infrared region, we can note a redshift in the maximum absorption of incident photons from ε2(ω) plots in the following sequence: BaCu2GeS4 (1.52 eV), SrCu2GeS4 (1.50 eV), BaCu2GeSe4 (1.30 eV), and SrCu2GeSe4 (0.93 eV). The approximated values of reflectivity, R(ω) are plotted against incident photon energy from 0 to14 eV. Thus, the reflectivity is approximately below 50% before E ≈ 12.0 eV and then increased to 70% reflection at ~ 13.0 eV. Based on calculated thermoelectric properties, these chalcogenides are promising thermoelectric materials. The ZT values of XCu2GeQ4 (X = Ba, Sr and Q = S, Se) decreased in the following sequence: SrCu2GeSe4 (2.6), BaCu2GeSe4 (1.85), SrCu2GeS4 (1.01) and BaCu2GeS4 (0.94). Hence, we believe our findings propose promising materials for anti-reflecting coating layers in optoelectronic technology.
AB - Cu-based chalcogenide materials have attracted a great deal of attention due to their promising optoelectronic properties. The density functional theory (DFT) framework is used in order to estimate the optical and electronic properties of XCu2GeQ4 (X = Ba, Sr and Q = S, Se). We report the optical and electronic properties of Cu-based chalcogenides in this study, which have narrow and direct bandgap materials. The calculated energy bandgap of quaternary chalcogenide materials decreases in the following sequence: SrCu2GeS4 (0.697 eV), BaCu2GeS4 (0.667 eV), BaCu2GeSe4 (0.378 eV), and SrCu2GeSe4 (0.195 eV). This reduction in energy bandgaps shows significant effect of changing dopants on electronic and consequently optical properties of XCu2GeQ4 (X = Ba, Sr and Q = S, Se). The optical characteristics of these materials are investigated in order to explore their potential for optoelectronic applications. However, other materials are emerging as contenders for solar cells, which operate from UV to infrared regions. Initially in infrared region, we can note a redshift in the maximum absorption of incident photons from ε2(ω) plots in the following sequence: BaCu2GeS4 (1.52 eV), SrCu2GeS4 (1.50 eV), BaCu2GeSe4 (1.30 eV), and SrCu2GeSe4 (0.93 eV). The approximated values of reflectivity, R(ω) are plotted against incident photon energy from 0 to14 eV. Thus, the reflectivity is approximately below 50% before E ≈ 12.0 eV and then increased to 70% reflection at ~ 13.0 eV. Based on calculated thermoelectric properties, these chalcogenides are promising thermoelectric materials. The ZT values of XCu2GeQ4 (X = Ba, Sr and Q = S, Se) decreased in the following sequence: SrCu2GeSe4 (2.6), BaCu2GeSe4 (1.85), SrCu2GeS4 (1.01) and BaCu2GeS4 (0.94). Hence, we believe our findings propose promising materials for anti-reflecting coating layers in optoelectronic technology.
KW - Chalcogenides
KW - DFT
KW - First-principles
KW - GGA
KW - Optoelectronic
KW - Solar cells
UR - http://www.scopus.com/inward/record.url?scp=85165231882&partnerID=8YFLogxK
U2 - 10.1007/s11082-023-05136-6
DO - 10.1007/s11082-023-05136-6
M3 - Article
AN - SCOPUS:85165231882
SN - 0306-8919
VL - 55
JO - Optical and Quantum Electronics
JF - Optical and Quantum Electronics
IS - 10
M1 - 849
ER -