Flexible and Efficient Verifiable Computation on Encrypted Data

Alexandre Bois, Ignacio Cascudo, Dario Fiore, Dongwoo Kim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

32 Scopus citations

Abstract

We consider the problem of verifiable and private delegation of computation [Gennaro et al. CRYPTO’10] in which a client stores private data on an untrusted server and asks the server to compute functions over this data. In this scenario we aim to achieve three main properties: the server should not learn information on inputs and outputs of the computation (privacy), the server cannot return wrong results without being caught (integrity), and the client can verify the correctness of the outputs faster than running the computation (efficiency). A known paradigm to solve this problem is to use a (non-private) verifiable computation (VC) to prove correctness of a homomorphic encryption (HE) evaluation on the ciphertexts. Despite the research advances in obtaining efficient VC and HE, using these two primitives together in this paradigm is concretely expensive. Recent work [Fiore et al. CCS’14, PKC’20] addressed this problem by designing specialized VC solutions that however require the HE scheme to work with very specific parameters; notably HE ciphertexts must be over Zq for a large prime q. In this work we propose a new solution that allows a flexible choice of HE parameters, while staying modular (based on the paradigm combining VC and HE) and efficient (the VC and the HE schemes are both executed at their best efficiency). At the core of our new protocol are new homomorphic hash functions for Galois rings. As an additional contribution we extend our results to support non-deterministic computations on encrypted data and an additional privacy property by which verifiers do not learn information on the inputs of the computation.

Original languageEnglish
Title of host publicationPublic-Key Cryptography – PKC 2021 - 24th IACR International Conference on Practice and Theory of Public Key Cryptography, 2021, Proceedings
EditorsJuan A. Garay
PublisherSpringer Science and Business Media Deutschland GmbH
Pages528-558
Number of pages31
ISBN (Print)9783030752477
DOIs
StatePublished - 2021
Event24th IACR International Conference on Practice and Theory of Public Key Cryptography, PKC 2021 - Virtual, Online
Duration: 10 May 202113 May 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12711 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference24th IACR International Conference on Practice and Theory of Public Key Cryptography, PKC 2021
CityVirtual, Online
Period10/05/2113/05/21

Fingerprint

Dive into the research topics of 'Flexible and Efficient Verifiable Computation on Encrypted Data'. Together they form a unique fingerprint.

Cite this