TY - JOUR
T1 - GdFeO3perovskite oxide decorated by group X heterometal oxides and bifunctional oxygen electrocatalysis
AU - Balamurugan, Chandran
AU - Song, Seungjin
AU - Jo, Hyeonjeong
AU - Seo, Junhyeok
N1 - Publisher Copyright:
©
PY - 2021/1/20
Y1 - 2021/1/20
N2 - Bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are necessary in the renewable energy systems. However, the kinetically slow and large energy-demanding procedures of oxygen electrocatalysis make the preparation of bifunctional catalysts difficult. In this work, we report a novel hierarchical GdFeO3 perovskite oxide of a spherelike nanostructure and surface modification with the group X heterometal oxides. The nanostructured GdFeO3 layer behaved as a bifunctional electrocatalyst in the oxygen electrocatalysis of OER and ORR. Moreover, the surface decoration with catalytically active PtOx + Ni/NiO nanoparticles enhanced the electrocatalytic performances substantially. Incorporation of mesoporous PtOx + Ni/NiO nanoparticles into the porous GdFeO3 nanostructure enlarged the electrochemically active surface area and provided the interconnected nanostructures to facilitate the OER/ORR. The nanostructures were visualized by scanning electron microscopy and transmission electron microscopy images, and the surface area and pore size of nanoparticles were analyzed from N2 adsorption/desorption isotherms. Tafel analysis indicates that surface modification effectively improves the kinetics of oxygen reactions and accordingly increases the electrocatalytic efficiency. Finally, the 2 wt % PtOx + NiO|GdFeO3 (x = 0, 1, and 2) electrode achieved the enhanced OER performance with an overpotential of 0.19 V at 10 mA/cm2 in an alkaline solution and a high turnover frequency of 0.28 s-1 at η = 0.5 V. Furthermore, the ORR activity is observed with an onset potential of 0.80 V and a half-wave potential (E1/2) of 0.40 V versus reversible hydrogen electrode.
AB - Bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are necessary in the renewable energy systems. However, the kinetically slow and large energy-demanding procedures of oxygen electrocatalysis make the preparation of bifunctional catalysts difficult. In this work, we report a novel hierarchical GdFeO3 perovskite oxide of a spherelike nanostructure and surface modification with the group X heterometal oxides. The nanostructured GdFeO3 layer behaved as a bifunctional electrocatalyst in the oxygen electrocatalysis of OER and ORR. Moreover, the surface decoration with catalytically active PtOx + Ni/NiO nanoparticles enhanced the electrocatalytic performances substantially. Incorporation of mesoporous PtOx + Ni/NiO nanoparticles into the porous GdFeO3 nanostructure enlarged the electrochemically active surface area and provided the interconnected nanostructures to facilitate the OER/ORR. The nanostructures were visualized by scanning electron microscopy and transmission electron microscopy images, and the surface area and pore size of nanoparticles were analyzed from N2 adsorption/desorption isotherms. Tafel analysis indicates that surface modification effectively improves the kinetics of oxygen reactions and accordingly increases the electrocatalytic efficiency. Finally, the 2 wt % PtOx + NiO|GdFeO3 (x = 0, 1, and 2) electrode achieved the enhanced OER performance with an overpotential of 0.19 V at 10 mA/cm2 in an alkaline solution and a high turnover frequency of 0.28 s-1 at η = 0.5 V. Furthermore, the ORR activity is observed with an onset potential of 0.80 V and a half-wave potential (E1/2) of 0.40 V versus reversible hydrogen electrode.
KW - bifunctional
KW - GdFeO
KW - group X heterometal oxides
KW - OER
KW - ORR
KW - perovskite oxide
UR - http://www.scopus.com/inward/record.url?scp=85099655095&partnerID=8YFLogxK
U2 - 10.1021/acsami.0c21169
DO - 10.1021/acsami.0c21169
M3 - Article
C2 - 33410321
AN - SCOPUS:85099655095
SN - 1944-8244
VL - 13
SP - 2788
EP - 2798
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 2
ER -