TY - JOUR
T1 - General Image Manipulation Detection Using Feature Engineering and a Deep Feed-Forward Neural Network
AU - Ahmed, Sajjad
AU - Yoon, Byungun
AU - Sharma, Sparsh
AU - Singh, Saurabh
AU - Islam, Saiful
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/11
Y1 - 2023/11
N2 - Within digital forensics, a notable emphasis is placed on the detection of the application of fundamental image-editing operators, including but not limited to median filters, average filters, contrast enhancement, resampling, and various other operations closely associated with these techniques. When conducting a historical analysis of an image that has potentially undergone various modifications in the past, it is a logical initial approach to search for alterations made by fundamental operators. This paper presents the development of a deep-learning-based system designed for the purpose of detecting fundamental manipulation operations. The research involved training a multilayer perceptron using a feature set of 36 dimensions derived from the gray-level co-occurrence matrix, gray-level run-length matrix, and normalized streak area. The system detected median filtering, mean filtering, the introduction of additive white Gaussian noise, and the application of JPEG compression in digital Images. Our system, which utilizes a multilayer perceptron trained with a 36-feature set, achieved an accuracy of 99.46% and outperformed state-of-the-art deep-learning-based solutions, which achieved an accuracy of 97.89%.
AB - Within digital forensics, a notable emphasis is placed on the detection of the application of fundamental image-editing operators, including but not limited to median filters, average filters, contrast enhancement, resampling, and various other operations closely associated with these techniques. When conducting a historical analysis of an image that has potentially undergone various modifications in the past, it is a logical initial approach to search for alterations made by fundamental operators. This paper presents the development of a deep-learning-based system designed for the purpose of detecting fundamental manipulation operations. The research involved training a multilayer perceptron using a feature set of 36 dimensions derived from the gray-level co-occurrence matrix, gray-level run-length matrix, and normalized streak area. The system detected median filtering, mean filtering, the introduction of additive white Gaussian noise, and the application of JPEG compression in digital Images. Our system, which utilizes a multilayer perceptron trained with a 36-feature set, achieved an accuracy of 99.46% and outperformed state-of-the-art deep-learning-based solutions, which achieved an accuracy of 97.89%.
KW - digital image forensics
KW - general-purpose image manipulation detection
KW - multilayer perceptron
KW - neural network
KW - operator detection
KW - texture features
UR - http://www.scopus.com/inward/record.url?scp=85176567369&partnerID=8YFLogxK
U2 - 10.3390/math11214537
DO - 10.3390/math11214537
M3 - Article
AN - SCOPUS:85176567369
SN - 2227-7390
VL - 11
JO - Mathematics
JF - Mathematics
IS - 21
M1 - 4537
ER -