Generating Synthetic Dataset for ML-Based IDS Using CTGAN and Feature Selection to Protect Smart IoT Environments

Saleh Alabdulwahab, Young Tak Kim, Aria Seo, Yunsik Son

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Networks within the Internet of Things (IoT) have some of the most targeted devices due to their lightweight design and the sensitive data exchanged through smart city networks. One way to protect a system from an attack is to use machine learning (ML)-based intrusion detection systems (IDSs), significantly improving classification tasks. Training ML algorithms require a large network traffic dataset; however, large storage and months of recording are required to capture the attacks, which is costly for IoT environments. This study proposes an ML pipeline using the conditional tabular generative adversarial network (CTGAN) model to generate a synthetic dataset. Then, the synthetic dataset was evaluated using several types of statistical and ML metrics. Using a decision tree, the accuracy of the generated dataset reached 0.99, and its lower complexity reached 0.05 s training and 0.004 s test times. The results show that synthetic data accurately reflect real data and are less complex, making them suitable for IoT environments and smart city applications. Thus, the generated synthetic dataset can further train models to secure IoT networks and applications.

Original languageEnglish
Article number10951
JournalApplied Sciences (Switzerland)
Volume13
Issue number19
DOIs
StatePublished - Oct 2023

Keywords

  • CTGAN
  • IoT
  • advanced persistent threat
  • information security
  • intrusion detection system
  • machine learning

Fingerprint

Dive into the research topics of 'Generating Synthetic Dataset for ML-Based IDS Using CTGAN and Feature Selection to Protect Smart IoT Environments'. Together they form a unique fingerprint.

Cite this