Abstract
The use of transition metal dichalcogenides (TMDs) for energy storage and/or conversion applications has become quite popular. Molybdenum sulfide (MoS2), one of many TMDs, has become a promising option for energy storage devices such as rechargeable batteries and supercapacitors due to its peculiar chemical and structural characteristics. Assembled with incredibly thin nano-petals, hierarchical 3D flowers of the 1T@2H-MoS2 were created in this study using a straightforward one-pot hydrothermal method. The physiological and chemical features of the hierarchical 3D MoS2 were examined using a variety of approaches. The formation of hexagonal crystallinity was revealed by investigating X-ray diffraction. The presence of only two bands (E2g and A1g) in Raman spectroscopy confirms phase formation. Scanning electron microscope (SEM) images reflect bunched 3D flowers of MoS2 assembled with a large number of ultrathin nano-petals. The average thickness of nano-petals remains below 40 nm. Elemental presence was rectified through energy-dispersive X-ray spectroscopy (EDS) and their states were examined using X-ray photoelectron spectroscopy (XPS). The electrode of such a 3D hierarchical architecture flaunts a higher specific capacitance of 207.14 F/g at a current density of 1A/g and exceptional stability of 93.6% across 1000 charge–discharge cycles. This study elaborates on the easiest path to develop the 3D hierarchical architecture of MoS2 for a variety of applications. Graphical Abstract: [Figure not available: see fulltext.]
Original language | English |
---|---|
Pages (from-to) | 181-195 |
Number of pages | 15 |
Journal | Journal of Solid State Electrochemistry |
Volume | 28 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2024 |
Keywords
- 3D sub-micron flowers
- Charge-storage kinetics
- Hydrothermal
- MoS
- Supercapcitor
- Ultrathin nano-petals