Abstract
Herein, we synthesized two new methyl substituted thiophenyl-quinoline based heteroleptic Ir(III) complexes as guest molecules for deep-red emitting solution-processed phosphorescent organic light-emitting diodes (PhOLEDs). Their thermal stabilities, photophysical properties and electroluminescence (EL) properties are systematically investigated. (MTPQ)2Ir(pic) and (MTPQ)2Ir(acac) showed photoluminescence emission of 614 and 629 nm and a photoluminescence quantum yield of 21% and 15%, respectively. Solution-processed deep-red emitting PhOLEDs were fabricated using standard structure with PEDOT:PSS and TPBi as hole and electron transport layers, respectively and, a mixed host of TCTA:TPBi (1:1) doped with the guest Ir(III) molecules. The emission electroluminescence wavelength was slightly red shifted by 11 nm for both (MTPQ)2Ir(pic) (625 nm) and (MTPQ)2Ir(acac) (640 nm). A maximum external quantum efficiency of 8.46% and maximum current efficiency of 7.37 cd/A was achieved for (MTPQ)2Ir(pic) with a deep-red CIE coordinates of (0.679, 0.318).
Original language | English |
---|---|
Pages (from-to) | 1-9 |
Number of pages | 9 |
Journal | Molecular Crystals and Liquid Crystals |
Volume | 660 |
Issue number | 1 |
DOIs | |
State | Published - 2 Jan 2018 |
Keywords
- Deep-red PhOLEDs
- iridium(III) complex
- mixed host
- phenylquinoline
- solution process